Stability of the Beta Phase in Ti-Mo-Cr Alloy Fabricated by Powder Metallurgy

  • Junaidi Syarif Universiti Kebangsaan Malaysia

Abstract


A new beta Ti alloy was designed and fabricated by powder metallurgy process using pure metallic powders. The addition of Mo and Cr increased the stability of the beta phase. By contrast, O promoted alpha phase formation upon cooling. The addition of 18%Mo and 10%Cr stabilized the beta phase into ambient temperature. O increased the critical cooling rate of formation of alpha phase due to the prediction of the continuous cooling transformation diagram calculated by the Java-based Material Properties software. Sintering and solution treatment also enhanced the alloying behavior of pure powders to their designated chemical compositions. Hardness of the alloy decreased with increasing Mo and Cr content, which led to the decrease of alpha phase. The Ti-18%Mo-10%Cr alloy exhibited better corrosion resistance than a commercial Ti-6%Al-4%V alloy, which is used as current biomaterial.

 

Author Biography

Junaidi Syarif, Universiti Kebangsaan Malaysia
Associate Professor, Department of Mechanical and Materials Engineering

References

H.J. Rack, J.I. Qazi, Materials Sci. Eng., C26 (2006) 1269-1277.

M. Niinomi, Met Mater Trans., 33A (2002) 477-486

E.B. Taddei, V.A.R. Henriques, C.R.M. Silva, C.A.A Cairo, Mater. Sci. Eng., C24 (2004) 683-687

M. Niinomi, Mater. Scie.Eng., A243 (1998) 231-236.

P.J. Bania, in Beta Titanium Alloys in the 1990’s (D. Eylon, R. Boyer, D. Koss), TMS, Warrendale, 1993, p. 3-24.

G. Lutjering, J.C. Williams, Titanium, second ed., Springer-Verlag, Berlin, 2007, p. 30.

R.M. Pilliar, in Biomedical Materials (R. Narayan), Springer Science+Business Media, New York, 2009, pp. 41-81.

M. J. Donachie, Titanium Technical guide: A Technical Guide, second ed., ASM International, Ohio, 2004, p. 47.

Y.G. Li, P.A. Blenkinsop, M.H. Loretto, D. Rugg, W. Voice, Acta Mater., 47 (1999) 2889-2905.

E. W. Colling, in Materials properties Handbook: Titanium Alloys (R. Boyer, G. Welsch, E. W. Colling), ASM Materials Park, Ohio, 1994, p. 3-114.

M. Morinaga, M. Kato, T. Kamimura, M. Fukumoto, I. Harada, K. Kubo, Proceedings of a Symposium of Titanium, June 29-July 2, San Diego, USA, 1993, p. 217-224.

N. Saunders, Z. Guo, X. Li, A.P. Miodownik, J.-P. Schille´, JOM, 12 (2003) 60-65.

Z. Guo, W. Sha, Mater. Sci. Eng., A 392 (2005) 449-452.

M. Gomez, C.I. Garcia, D.M. Haezerbrouck and A.J. Deardo, ISIJ Intl., 49 (2009) 302-311.

N. Saunders, S. Kucherenko, X. Li, A.P. Miodownik, J.-P. Schille´, J. Phas. Equi., 22 (2001) 463-469.

D.A. Akinlade, W.F. Caley, N.L. Richards, M.C. Chaturvedi, Mater. Sci. Eng., A486 (2008) 626-633.

M.T. Pham, I. Zyganow, W. Matz, H. Reuther, S. Oswald, E. Richter, E. Wieser, Thin Solid Films, 310 (1997) 251-259.

H. Nakajima, M. Koiwa, ISIJ Intl., 31(1991) 757-766.

A.V. Dobromyslov, V.A. Elkin, Scripta Mater., 44(2001) 905-910.

X.H. Min, K. Tsuzaki, S. Emura, K. Tsuchiya, Mater. Sci Eng., A528 (2011) 4569-4578.

Annual Book of ASTM Standard B817-08, ASM Intl., West Conshohocken, 1988.

Z. Guo, S. Malinov, W. Sha, Comp. Mater. Sci., 32 (2005) 1-12.

M.S. Oh, J.Y. Lee, J.K. Park, Metal. Mater. Trans., 35A (2004) 3071-3077.

S. Takaki, K. Tsuzaki, Microstructure of Material, Asakura Shoten, Tokyo,2000, p. 100 (in Japanese).

D. McLean, Grain Boundaries in Metals, Oxford University Press, 1957.

M.P. Seah, E.D. Hondros, Scripta Met., 7 (1973) 735-737.

S. Takaki, N. Nakada, T. Tsuchiyama in Advanced Steels: The Recent Scenario in Steel Science and Technology,(Y. Weng, H. Dong, Y. Gan) Springer, Berlin, 2011, p. 81-86.

M.P. Neupane, I.S. Park, S.J. Lee, K.A. Kim, M.H. Lee, T. Sung, Int. J. Electrochem. Sci., 4 (2009) 197-207.

X. Wu, J. del Prado, Q. Li, A. Huang, D. Hu, M.H. Lorretto, Acta Mater., 54 (2006) 5433-5448.

Q. Wei, L. Wang, Y Fu, J. Qin, W. Lu, D. Zhang, Mater & Design, 32 (2011) 2934-2939.

J.W. Martin, R.D. Doherty, B. Cantor, Stability of Microstructure in Metallic Systems, second ed., Cambridge University Press, Cambridge, 1997, p. 57.

N. Wain, X.J. Hao, G.A Ravi, X. Wu, Mater. Sci. Eng., A 527 (2010) 7673-7683.

M. Abdel-Hady, K. Hinoshita, M. Morinaga, Scripta Mater., 55 (2006) 477-480.

F. Geng, M. Niinomi, M. Nakai, Mater. Sci. Eng, A528 (2011) 5435-5445.

J.I. Qazi, B. Marquardt, H.J. Rack, JOM 11 (2004) 49.

T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, T. Sakuma, Science, 300 (2003) 464-467.

X. Tang, T. Ahmed and H.J. Rack, J. Mater. Sci. 35 (2000) 1805-1811.

P.-J. Arrazola, A. Garay, L.-M. Iriarte, M. Armendia, S. Marya, F. Le Maître, J. Mater. Proc. Tech., 209 (2009) 2223-2230.

D. Kuroda, H. Kawasaki, A. Yamamoto, S. Hiromoto and T. Hanawa, Mater. Sci. Eng., C25 (2005), p. 312-320.

Published
2014/02/10
How to Cite
Syarif, J. (2013). Stability of the Beta Phase in Ti-Mo-Cr Alloy Fabricated by Powder Metallurgy. Journal of Mining and Metallurgy, Section B: Metallurgy, 49(3), 285. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/2770
Section
Original Scientific Paper