Surface grain coarsening and surface softening during machining of ultra-fine grained titanium

  • Gyorgy Kaptay University of Miskolc, Miskolc, Hungary

Abstract


Experiments are run to show that different machining conditions applied to ultra-fine grained pure titanium lead to different levels of grain coarsening and softening near the machined surface. Under “hard” machining conditions the upper 40 microns of the machined surface are altered with a decreased microhardness. The experimental results are reasonably reproduced by model calculations. Expanding the parameter field of the model calculations, the surface coarsening diagram and the surface softening diagram due to machining are presented, showing the region of technological parameters, under which neither grain coarsening nor softening takes place along the machined surface.

References

G. Hornyak, J. Dutta, H. Tibbals, A. Rao, Introduction to Nanoscience. CRC Press, New York, 2008.

M. Hoseini, M.H. Pourian, F. Bridier, H. Vali, J.A. Szpunar, P. Bocher, Mater. Sci. Eng. A 532 (2012) 58-63.

R.Z. Valiev, Nature Mater. 3 (2004) 511-516.

V. Latysh, G. Krallics, I. Alexandrov, A. Fodor, Current Appl. Phys., 6 (2006) 262-266.

D. Priadi, R.A.M. Napitupulu, E.S. siradj: J. Min. Metall. Sect. B-Metall. 47 (2) B (2011) 199 – 209.

Y. Karpat , J. Mater. Process. Technol, 211 (2011) 737-749.

R. S. Averback, H. J. Höfler, R. Tao, Mater. Sci. Eng. A 166 (1993) 169–177.

R.Y. Lutfullin, A.A. Kruglov, R.V. Safiullin, M.K. Mukhametrakhimov, O.A. Rudenko, Mater. Sci. Eng. A 503 (2009) 52-54.

H. Chandrasekaran, A. Thuvander, Machin. Sci. Technol. 2 (1998) 355-367.

A. Bareggi, G.E. O'Donnell, A. Torrance, Proceedings of the 24th International Manufacturing Conference, Waterford, 1 (2007) 263-272.

ANSYS Basic Analyzes Procedure Guide. ANSYS Release 5.6., ANSYS Inc. 1998.

J. Geiger, A. Roosz, P. Barkoczy, Acta Mater. 49 (2001) 623-629.

G.A. Salishchev, S.P. Malisheva, R.M. Galeyev, FММ 82 (1996) 117-127.

K. Inyoung, J. Won-Sik, K. Jongyoul, P. Kyung-Tae, H.S. Dong, H.S., Scripta Mater. 45 (2001) 575-581.

J.D. Verhoeven, Fundamentals of physical metallurgy, John Wiley, NY. 1975.

R.Y. Valiev, I.V. Aleksandrov, Nanosturctured metals obtained by SPD (in Russian), Logos, Moscow, 2000.

V.P. Pimogin, T.M. Gaponceva, T.I. Chashuchina, L.M. Voronova, FMM 105 (2008) 438-445.

E.N. Popova, FMM 103 (2007) 426-432.

Kalpakjian, S., 1995. Manufacturing Engineering and technology, Addison-Wesley Publ. Comp., Amsterdam (see page 614).

Trent, E.M., Wright, P.K., 2000. Metal cutting. Butterworth – Heinemann, New-York, pp. 446.

V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.Z. Valiev, Mater Sci Eng A, 303 (2001) 82-89.

A.N. Reznikov, Thermophysics of cutting (in Russian), Mashinostroenie, Moscow, USSR, 1969.

M.F. Poletika, Contact phenomena at metal cutting (in Russian), Izv. Tomskogo Polytech. Inst., Tomsk, USSR, 1965.

D.R. Poirier, G.H. Geiger, Transport Phenomena in Materials Processing, TMS, Warrendale, USA, 1994.

Yu. Altintas. Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations and CNC Design, Cambridge, Cambridge University Press, 2000.

J. Emsley, The Elements - Clarendon Press, Oxford, UK, 1989.

A.A. Nazarov, A.E. Romanov, R.Z. Valiev, Acta Metall Mater, 41 (1993) 1033-1040.

Published
2014/02/10
How to Cite
Kaptay, G. (2012). Surface grain coarsening and surface softening during machining of ultra-fine grained titanium. Journal of Mining and Metallurgy, Section B: Metallurgy, 48(3), 449. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/2859
Section
Original Scientific Paper