Investigation on the garnierite and limonite mixed laterite ore for recovery nickel

  • Shiwei Zhou
  • Chao Lu
  • Ba Zhang
  • Bo Li
  • Yonggang Wei Kunming University of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, China
Keywords: Garnierite ore; Limonite ore; Reduction; Phase transformation

Abstract


Laterite, as an important resource of nickel, has become the focus of development and utilization. This study adopted the method of mixing ore (garnierite and limonite) to increase the recovery rate of nickel in garnierite ore. The phase transformation of the two ores were investigated during the heating process, dehydroxylation and recrystallization were observed and the iron oxides phase was transformed into iron-containing spinel finally. By changing the proportion of the two ores, increasing the iron content in the sample was beneficial to the reduction of nickel. Then, Fe2O3, Fe3O4 and Fe were used as the iron source to study the mechanism of the iron-bearing minerals in promoting the reduction of nickel. The results indicated that hematite and/or magnetite would react with amorphous silicate minerals to generate magnesioferrite and enstatite, thereby avoiding additional forsterite generation; moreover, the trevorite phase would be formed, which strengthens the aggregation of nickel and iron.

References

1. M. Valix, J. Y. Tang and W. H. Cheung, Miner. Eng., 14 (01) (2001) 1629-1635.
2. A. Dalvi, W. Bacon and R. Osborne, in PDAC 2004 International Convention, Toronto, 2004, pp. 1-27.
3. D. Georgiou and V. G. Papangelakis, Hydrometallurgy, 49 (01) (1998) 23-46.
4. M. Jiang, T. C. Sun, Z. G. Liu, S. Y. Zhang, N. Liu, J. Kou and Y. Y. Cao, J. Univ. Sci. Technol. B., 35 (1) (2013) 27-34.
5. Y. Liu, Z. Y. Wang and L. Lu, Chin. Nonferrous. Met (1) (2010) 54-56.
6. Z. G. Liu, T. C. Sun, E. X. Gao and X. P. Wang, Chin. J. Nonferrous. Met., 25 (5) (2015) 1332-1338.
7. X. Z. Yuan, Z. K. Li and J. Liu, Ferro-Alloys (4) (2008) 8-13.
8. J. L. Zhang, R. Mao, D. H. Huang, J. G. Shao and F. G. Li, Chin. J. Nonferrous. Met., 23 (3) (2013) 843-851.
9. M. Valix and W. H. Cheung, Miner. Eng., 15 (8) (2002) 607-612.
10. J. Yang, G. Q. Zhang, O. Ostrovski and S. Jahanshahi, Miner. Eng., 54 (2013) 110-115.
11. M. A. Rhamdhani, P. C. Hayes and E. Jak, Miner. Process. Extr. Metall., 118 (3) (2013) 129-145.
12. M. A. Rhamdhani, P. C. Hayes and E. Jak, Miner. Process. Extr. Metall., 118 (3) (2013) 146-155.
13. M. Kawahara, J. M. Toguri and R. A. Bergman, Metall. Mater. Trans. B, 19 (2) (1988) 181-186.
14. A. F. Chen, Gansu Metall., 32 (6) (2010) 111-113.
15. J. O. Park, H. S. Kim and S. M. Jung, Miner. Eng., 71 (2015) 205-215.
16. J. Lu, S. J. Liu, J. S. Guan, W. G. Du, F. Pan and S. Yang, Miner. Eng., 49 (2013) 154-164.
17. X. H. Tang, R. Z. Liu, L. Yao, Z. J. Ji, Y. T. Zhang and S. Q. Li, Int. J. Min. Met. Mater., 21 (10) (2014) 955-961.
18. D. Walter, G. Buxbaum and W. Laqua, J. Therm. Anal. Calorim., 63 (63) (2001) 733-748.
19. E. N. Zevgolis, C. Zografidis, T. Perraki and E. Devlin, J. Therm. Anal. Calorim., 100 (1) (2009) 133-139.
20. Y. V. Swamy, B. B. Kar and J. K. Mohanty, Hydrometallurgy, 69 (1-3) (2003) 89-98.
21. F. A. López, M. C. Ramirez, J. A. Pons, A. López-Delgado and F. J. Alguacil, J. Therm. Anal. Calorim., 94 (2) (2008) 517-522.
22. L. E. Sarkisyan, Powder Metall. Met. Ceram., 25 (10) (1986) 832-837.
Published
2021/09/03
How to Cite
Zhou, S., Lu, C., Zhang, B., Li, B., & Wei, Y. (2021). Investigation on the garnierite and limonite mixed laterite ore for recovery nickel. Journal of Mining and Metallurgy, Section B: Metallurgy, 57(2), 245-252. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/29627
Section
Original Scientific Paper