Density and surface tension of molten cast irons
Abstract
Computer-aided development of liquid-assisted metallurgical processes requires reliable basic data for the molten materials, including thermophysical properties such as density, surface tension and viscosity. Cast irons belong to the group of Fe-C alloys of practical importance due to their good technological and utility properties, yet experimental thermophysical data of cast irons in the literature are scarce. In this study, the density and surface tension of three compacted graphite cast iron alloys were measured by the sessile drop method in contact heating mode in the temperature range of 1473 – 1723 K with polycrystalline alumina as a substrate. The drop profile images were recorded both during heating and subsequent cooling regimes. At 1473 K, the density values of the studied compacted graphite irons are between 6.66 and 6.69 g*cm-3 , whereas surface tension values are between 1130 and 1510 mN*m-1. The density decreases with increasing temperature, while surface tension dependence on temperature is less obvious. The obtained results are compared to the available literature data and analyzed taking into account chemical interaction of liquid cast irons with the substrate material.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.