Primary microstructure characterization of Co-20Ni-9Al-7W-3Re-2Ti superalloy

  • Agnieszka Tomaszewska The Silesian University of Technology
Keywords: Co-Al-W alloys, new Co-based superalloys, primary microstructure, interdendritic segregation

Abstract


The characterization of the primary microstructure of the new Co-based superalloy of Co-20Ni-9Al-7W-3Re-2Ti type was shown in this article. The investigated alloy was manufactured by induction melting process from pure feedstock materials. The fundamental technological problem related to Co-Al-W-X multicomponent alloys casting process is a strong susceptibility to interdendritic segregation of alloying elements, especially tungsten and rhenium. The performed analysis revealed that the observed effect of alloying elements segregation was detectable and much stronger than for Co-9Al-9W and Co-20Ni-7Al-7W alloys, related to titanium, nickel, and aluminium migration to inter-dendritic spaces. Consequently, the tungsten concentration gradient between dendritic and interdendritic zones was higher than for Co-9Al-9W and Co-20Ni-7Al-7W alloys. The same situation was in the case of rhenium and cobalt, but Co concentration in the interdendritic zone was only slightly lower.

References

[1] R.C. Reed, The Superalloys Fundamentals and Applications, Cambridge University Press, 2006.
[2] D. Coutsouradis, A. Davin, M. Lamberigts, Cobalt-based superalloys for applications in gas turbines, Materials Science and Engineering A, 88 (1987) 11-19. https://doi.org/10.1016/0025-5416(87)90061-9
[3
] D.L. Douglass, V.S. Bhide, E. Vineberg, The corrosion of some superalloys in contact with coal chars in coal gasifier atmospheres, Oxidation of Metals, 16 (1981) 29-79. https://doi.org/10.1007/BF00603744
[4
] N. Eliaz, G. Shemesh, R.M. Latanision, Hot corrosion in gas turbine components, Engineering Failure Analysis, 9 (2002) 31-43. https://doi.org/10.1016/S1350-6307(00)00035-2
[5
] S.-G. Kang and T. Kobayashi, Mechanical property of single phase Co-Ni-Cr-Mo based superalloy produced by cold working and recrystallization heat treatment, Materials Science Forum, 449-452 (2004) 573-576. https://doi.org/10.4028/www.scientific.net/MSF.449-452.573
[6
] W.H. Jiang, X.D. Yao, H.R. Guan, Z.Q. Hu, Secondary M6C precipitation in cobalt-base superalloy, Journal of Materials Science Letters, 8 (1999) 303–305.
[7] W.H. Jiang, X.D. Yao, H.R. Guan, Z.Q. Hu, Carbide behavior during high-temperature low cycle fatigue in cobalt-base superalloy, Journal of Materials Science, 4 (1999) 2859-2864. https://doi.org/10.1023/A:1004683301816
[8
] P. Zieba, Microanalytical study of the discontinuous precipitation reaction in a Co–13 at. % Al alloy, Acta Materialia, 46 (1998) 369–377. https://doi.org/10.1016/S1359-6454(97)00200-0
[9
] T. Omori, Y. Sutou, K. Oikawa, R. Kainuma, K. Ishida, Shape memory effect in the ferromagnetic Co–14 at. % Al alloy, Scripta Materialia 52 (2005) 565–569. https://doi.org/10.1016/j.scriptamat.2004.12.001
[10
] T. Omori, Y. Sutou, K. Oikawa, R. Kainuma, K. Ishida, Shape memory and magnetic properties of Co–Al ferromagnetic shape memory alloys, Materials Science and Engineering A, 438 (2006) 1045–1049. https://doi.org/10.1016/j.msea.2005.12.068
[11
] H. Okamoto, Co-W (Cobalt-Tungsten), Journal of Phase Equilibria and Diffusion, 29 (2008), 119. https://doi.org/10.1007/s11669-007-9229-0
[12
] H. Okamoto, Co-Mo (Cobalt-Molybdenum), Journal of Phase Equilibria and Diffusion, 28 (2007) 300. https://doi.org/10.1007/s11669-007-9055-4
[13
] K.P. Gupta, The Co-Nb-W (Cobalt-Niobium-Tungsten) system, Journal of Phase Equilibria, 24 (2003) 82-85. https://doi.org/10.1007/s11669-003-0018-0
[14
] K.P. Gupta, The Co-Mo-Ta (Cobalt-Molybdenum-Tantalum) system, Journal of Phase Equilibria, 24 (2003) 186-189. https://doi.org/10.1361/105497103770330875
[15
] J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Cobalt-base high-temperature alloys, Science, 312 (2006) 90-91. https://doi.org/10.1126/science.1121738
[16
] C.S. Lee, Precipitation-hardening characteristics of ternary cobalt– aluminum–X alloys, University of Arizona, 1971.
[17] M. Korchynsky, R.W. Fountain, Precipitation phenomena in cobalt–tantalum alloys, Transactions of the Metallurgical Society of AIME, 215 (1959) 1033-1043.
[18] S.K. Makineni, B. Nithin, K. Chattopadhyay, A new tungsten-free γ-γʹ Co-Al-Mo-Nb-based superalloy, Scripta Materialia, 98 (2015) 36-39. https://doi.org/10.1016/j.scriptamat.2014.11.009
[19
] V.V. Kokorin, K.V. Chuistov, Initial stages of decomposition of supersaturated solid solutions Co–Ta and Co–Nb, Fiz Metallov Metalloved, 21 (1966) 311–314.
[20] R.D. Dragsdorf, W.D. Foreing, The intermetallic phases in the cobalt–tantalum system, Acta Crystallographica 15 (1962) 531–536.
[21] J. Dutkiewicz, G. Kostorz, Structure of martensite in Co–W alloys, Materials Science Engineering A, 132 (1991) 267–272. https://doi.org/10.1016/0921-5093(91)90383-X
[22
] S.K. Makineni, A. Samanta, T. Rojhirunsakool, T. Alam, B. Nithin, A.K. Singh, R. Banerjee, K. Chattopadhyay, A new class of high strength high temperature cobalt based γ-γʹ Co-Mo-Al alloys stabilized with Ta addition, Acta Materialia, 97 (2015) 29-40. https://doi.org/10.1016/j.actamat.2015.06.034
[23
] S.K. Makineni, B. Nithin, K. Chattopadhyay, Synthesis of a new tungsten-free γ-γʹ cobalt-based superalloy by tuning alloying additions, Acta Materialia, 85 (2015) 85-94. https://doi.org/10.1016/j.actamat.2014.11.016
[24
] Q. Yao, S.-L. Shang, Y.-J. Hu, Y. Wang, Y. Wang, Y.-H. Zhu, Z.-K. Liu, First-principles investigation of phase stability, elastic and thermodynamic properties in L12 Co3(Al,Mo,Nb) phase, Intermetallics, 78 (2016) 1-7. https://doi.org/10.1016/j.intermet.2016.08.002
[25
] T.M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, A. Suzuki, New Co-based gamma-gamma prime high-temperature alloys, JOM, 62 (2010) 58-63. https://doi.org/10.1007/s11837-010-0013-y
[26
] L. Klein, A. Bauer, S. Neumeier, M. Göken, S. Virtanen, High temperature oxidation of γ/γʹ -strengthened Co-based superalloys, Corrosion Science, 53 (2011) 2027-2034. https://doi.org/10.1016/j.corsci.2011.02.033
[27
] H.-Y. Yan, V.A. Vorontsov, D. Dye, Effect of alloying on the oxidation behavior of Co-Al-W superalloys, Corrosion Science, 83 (2014) 382-395. https://doi.org/10.1016/j.corsci.2014.03.002
[28
] M. Ooshima, K. Tanaka, N.L. Okamoto, K. Kishida, H. Inui, Effects of quaternary alloying elements on the γʹ solvus temperature of Co–Al–W based alloys with fcc/L12 two-phase microstructures, Journal of Alloys and Compounds, 508 (2010) 71–78. https://doi.org/10.1016/j.jallcom.2010.08.050
[29
] L. Wang, M. Oehring, U. Lorenz, J. Yang, F. Pyczak, Influence of alloying additions on L12 decomposition in γ-γʹ Co-9Al-9W-2X quaternary alloys, Scripta Materialia, 154 (2018) 176–181. https://doi.org/10.1016/j.jallcom.2010.08.050
[30
] K. Shinagawa, T. Omori, K. Oikawa, R. Kainuma, K. Ishida, Ductility enhancement by boron addition in Co–Al–W high-temperature alloys, Scripta Materlialia, 61 (2009) 612–615. https://doi.org/10.1016/j.scriptamat.2009.05.037
[31
] Y.T. Xu, T.D. Xia, W.J. Zhao, X.J. Wang, Alloying element Nb effect on microstructure of Co–Al–W superalloy by vacuum arc melting, Applied Mechanics and Materials, 229 (2012) 63–67. https://doi.org/10.4028/www.scientific.net/AMM.229-231.63
[32
] F. Xue, H.J. Zhou, X.F. Ding, M.L. Wang, Q. Feng, Improved high temperature γʹ stability of Co–Al–W-base alloys containing Ti and Ta, Materials Letters, 112 (2013) 215–218. https://doi.org/10.1016/j.matlet.2013.09.023
[33
] L. Zhang, X. Qu, M. Qin, Rafi-ud-din, X. He, Ye Liu, Microstructure and mechanical properties of γʹ strengthened Co–Ni–Al–W-base ODS alloys, Materials Chemistry and Physics, 136 (2012) 371–378. https://doi.org/10.1016/j.matchemphys.2012.06.055
[34
] M. Titus, A. Suzuki, T.M. Pollock, Creep and directional coarsening in single crystals of new γ–γ′ cobalt-base alloys, Scripta Materialia, 66 (2012) 574-77. https://doi.org/10.1016/j.scriptamat.2012.01.008
[35
] K. Tanaka, M. Ooshima, N. Tsuno, A. Sato, H. Inui, Creep deformation of single crystals of new Co–Al–W-based alloys with fcc/L12 two-phase microstructures, Philosophical Magazine, 92 (2012) 4011-4027. https://doi.org/10.1080/14786435.2012.700416
[36
] M.S. Titus, Y.M. Eggeler, A. Suzuki, T.M. Pollock, Creep-induced planar defects in L12-containing Co- and CoNi-base single-crystal superalloys, Acta Materialia, 82 (2015) 530-539. https://doi.org/10.1016/j.actamat.2014.08.033
[37
] H.Y. Yan, V.A. Vorontsov, J. Coakley, N.G. Jones, H.J. Stone, D. Dye, Quaternary alloying effects and the prospects for a new generation of Co-base superalloys, in Superalloys 2002, E.S.Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesman, eds. (The Minerals, Metals & Materials Society, Warrendale, PA, 2012); 705-714. https://doi.org/10.7449/2012/Superalloys_2012_705_714
[38
] L. Klein, M.S. Killian, S. Virtanen, The effect of nickel and silicon addition on some oxidation properties of novel Co-based high temperature alloys, Corrosion Science, 69 (2013) 43-49. https://doi.org/10.1016/j.corsci.2012.09.046
[39
] M. Knop, P. Mulvey, F. Ismail, A. Radecka, K.M. Rahman, T.C. Lindley, B.A. Shollock, M.C. Hardy, M.P. Moody, T.L. Martin, P.A.J. Bagot, D. Dye, A new polycrystalline Co-Ni superalloy, JOM, 66 (2014) 2495–2501. https://doi.org/10.1007/s11837-014-1175-9
[40
] D.-B. Wei, X. Zhou, F.-K. Li, M.-F. Li, S.-Q. Li, P.-Z. Zhang, Effects of Plasma Surface Ta Alloying on the Tribology Behavior of γ-TiAl, Journal of Mining and Metallurgy. Section B-Metallurgy, 57 (2021) 97-104. https://doi.org/10.2298/JMMB200617002W
[41
] T. Mikuszewski, A. Tomaszewska, G. Moskal, D. Migas, D. Niemiec, Characterization of primary microstructure of γ-γ' Co-Al-W cobalt-based superalloy, Materials Engineering, 5 (2017) 217-223. https://doi.org/10.15199/28.2017.5.3
[42
] A. Tomaszewska, G. Moskal, T. Mikuszewski, A. Płachta, G. Junak, Primary microstructure characterization of as-casted Co-20Ni-7Al-7W superalloy, Archives of Foundry, 19 (2019) 78-83. https://doi.org/10.24425/afe.2019.127143

Published
2022/01/19
How to Cite
Tomaszewska, A. (2022). Primary microstructure characterization of Co-20Ni-9Al-7W-3Re-2Ti superalloy. Journal of Mining and Metallurgy, Section B: Metallurgy, 58(1), 43-49. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/31234
Section
Original Scientific Paper