Microstructures and tensile properties of Mg-2Zn-0.8Sr-0.2Ca alloy extruded at relatively slow speed and low temperature

  • An Yang Taiyuan University of Technology
  • Kai-bo Nie
  • Kun-Kun Deng
  • Jun-gang Han
  • Tao Xiao
  • Xiuzhu Han
Keywords: Mg-2Zn-0.8Sr-0.2Ca alloy; extrusion; microstructure; texture; mechanical properties

Abstract


In this work, a new Mg-2Zn-0.8Sr-0.2Ca alloy with low content of alloying elements was subjected to extrusion at relatively low-temperatures (240 and 200°C) and slow-speed (1.0 mm/s and 0.1 mm/s). The average size and volume fraction of recrystallized grains in the extruded Mg-2Zn-0.8Sr-0.2Ca alloy gradually decreased with the reduction in extrusion rate or extrusion temperature. Some broken second phases including Ca2Mg6Zn3 and Mg17Sr2 appeared in the extruded Mg-2Zn-0.8Sr-0.2Ca alloy along with some precipitated nano-sized MgZn2 phases. The volume fraction of MgZn2 phases gradually in the alloy increased as extrusion rate or temperature decreased. High performance with yield strength of 393.1 MPa, ultimate tensile strength of 418.4 MPa and the elongation of 5.7% was obtained in the Mg-2Zn-0.8Sr-0.2Ca alloy extruded at 200°C & 0.1 mm/s. The main strengthening mechanisms could be attributed to grain-boundary strengthening, dislocation strengthening, precipitation strengthening, which were related to the change in grain size, second phases and basal texture intensity for the extruded Mg-2Zn-0.8Sr-0.2Ca alloy.

References

[1] Zeng, Z., Stanford, N., Davies, C. H. J., Nie, J.-F., & Birbilis, N. (2018). Magnesium extrusion alloys: a review of developments and prospects. International Materials Reviews, 1–36. https://doi.org/10.1080/09506608.2017.1421439.
[2] Alaneme, K. K., & Okotete, E. A. (2017). Enhancing plastic deformability of Mg and its alloys-A review of traditional and nascent developments. Journal of Magnesium and Alloys, 5(4), 460-475. https://doi.org/10.1016/j.jma.2017.11.001.
[3] Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27(9), 1728-1734. https://doi.org/10.1016/j.biomaterials.2005.10.003.
[4] Somekawa, H., Kinoshita, A., & Kato, A. (2018). Effect of alloying elements on room temperature stretch formability in Mg alloys. Materials Science and Engineering: A, 732, 21-28. https://doi.org/10.1016/j.msea.2018.06.098.
[5] Oh-ishi, K., Watanabe, R., Mendis, C. L., & Hono, K. (2009). Age-hardening response of Mg-0.3 at.% Ca alloys with different Zn contents. Materials Science
and Engineering: A, 526(1-2), 177-184. https://doi.org/10.1016/j.msea.2009.07.027.
[6] Cai, S., Lei, T., Li, N., & Feng, F. (2012). Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Materials Science and Engineering: C, 32(8), 2570–2577. https://doi.org/10.1016/j.msec.2012.07.042.
[7] Maeng, D. ., Kim, T. ., Lee, J. ., Hong, S. ., Seo, S. ., & Chun, B. . (2000). Microstructure and strength of rapidly solidified and extruded Mg-Zn alloys. Scripta Materialia, 43(5), 385-389. https://doi.org/10.1016/S1359-6462(00)00428-0.
[8] Gao, X., & Nie, J. F. (2007). Characterization of strengthening precipitate phases in a Mg-Zn alloy. Scripta Materialia, 56(8), 645-648.
https://doi.org/10.1016/j.scriptamat.2007.01.006.
[9] Meng, X., Jiang, Z., Zhu, S., & Guan, S. (2020). Effects of Sr addition on microstructure, mechanical and corrosion properties of biodegradable Mg-Zn-Ca alloy. Journal of Alloys and Compounds, 838, 155611. https://doi.org/10.1016/j.jallcom.2020.155611.
[10] Larionova, T. V., Park, W.-W., & You, B.-S. (2001). A ternary phase observed in rapidly solidified Mg-Ca-Zn alloys. Scripta Materialia, 45(1), 7-12. https://doi.org/10.1016/S1359-6462(01)00982-4.
[11] Liu, X. G., Peng, X. D., Xie, W. D., & Wei, Q. Y. (2005). Preparation Technologies and Applications of Strontium-Magnesium Master Alloys. Materials Science Forum, 488-489, 31-34. https://doi.org/10.4028/www.scientific.net/MSF.488-489.31.
[12] Guan, R., Cipriano, A. F., Zhao, Z., Lock, J., Tie, D., Zhao, T., Cui, T., Liu, H. (2013). Development and evaluation of a magnesium–zinc–strontium alloy for biomedical application–Alloy processing, microstructure, mechanical properties, and biodegradation. Materials Science and Engineering: C, 33(7), 3661–3669.
https://doi.org/10.1016/j.msec.2013.04.054.
[13] DING, T., YAN, H., CHEN, J., XIA, W., SU, B., & YU, Z. (2019). Dynamic recrystallization and mechanical properties of high-strain-rate hot rolled Mg–5Zn alloys with addition of Ca and Sr. Transactions of Nonferrous Metals Society of China, 29(8), 1631–1640. https://doi.org/10.1016/s1003-6326(19)65070-3.
[14] Du, Y. Z., Qiao, X. G., Zheng, M. Y., Wang, D. B., Wu, K., & Golovin, I. S. (2016). Effect of microalloying with Ca on the microstructure and mechanical properties of Mg-6 mass% Zn alloys. Materials & Design, 98, 285-293. https://doi.org/10.1016/j.matdes.2016.03.025.
[15] LIU, Y., LIU, D., ZHAO, Y., & CHEN, M. (2015). Corrosion degradation behavior of Mg-Ca alloy with high Ca content in SBF. Transactions of Nonferrous Metals Society of China, 25(10), 3339-3347. https://doi.org/10.1016/S1003-6326(15)63968-1.
[16] Li, W., Deng, K., Zhang, X., Nie, K., & Xu, F. (2016). Effect of ultra-slow extrusion speed on the microstructure and mechanical properties of Mg-4Zn-0.5Ca alloy. Materials Science and Engineering: A, 677, 367-375. https://doi.org/10.1016/j.msea.2016.09.059.
[17] Xu, C., Nakata, T., Fan, G.-H., Yamanaka, K., Tang, G.-Z., Geng, L., & Kamado, S. (2018). Effect of Partially Substituting Ca with Mischmetal on the Microstructure and Mechanical Properties of Extruded Mg-Al-Ca-Mn-Based Alloys. Acta Metallurgica Sinica (English Letters). https://doi.org/10.1007/s40195-018-0820-7.
[18] Zhou M G, Huang X S, Morisada Yoshiaki, Fujii Hidetoshi, Chino Yasumasa. Effects of Ca and Sr additions on microstructure, mechanical properties, and ignition temperature of hot-rolled Mg-Zn alloy[J]. Materials Science and Engineering A, 2020,769,138474. https://doi.org/10.1016/j.msea.2019.138474.
[19] Wei, J., Jiang, S., Chen, Z., & Liu, C. (2020). Increasing strength and ductility of a Mg-9Al alloy by dynamic precipitation assisted grain refinement during multi-directional forging. Materials Science and Engineering: A, 139192.
https://doi.org/10.1016/j.msea.2020.139192.
[20] Zhang, J., Xie, H., Lu, Z., Ma, Y., Tao, S., & Zhao, K. (2018). Microstructure evolution and mechanical properties of AZ80 magnesium alloy during high-pass multi-directional forging. Results in Physics, 10, 967-972. https://doi.org/10.1016/j.rinp.2018.08.028.
[21] Tong, L. B., Zheng, M. Y., Cheng, L. R., Zhang, D. P., Kamado, S., Meng, J., & Zhang, H. J. (2015). Influence of deformation rate on microstructure, texture and mechanical properties of indirect-extruded Mg-Zn-Ca alloy. Materials Characterization, 104, 66-72. https://doi.org/10.1016/j.matchar.2014.09.020.
[22] Du, Y. Z., Zheng, M. Y., Xu, C., Qiao, X. G., Wu, K., Liu, X. D., Wang, G. J. Lv, X. Y. (2013). Microstructures and mechanical properties of as-cast and as-extruded Mg-4.50Zn-1.13Ca (wt%) alloys. Materials Science and Engineering: A, 576, 6–13. https://doi.org/10.1016/j.msea.2013.03.034.
[23] Nie, K. B., Han, J. G., Deng, K. K., & Zhu, Z. H. (2019). Simultaneous improvements in tensile strength and elongation of a Mg-2Zn-0.8Sr-0.2Ca alloy by a combination of microalloying and low content of TiC nanoparticles. Materials Letters, 126951. https://doi.org/10.1016/j.matlet.2019.126951.
[24] Kang, X. K., Nie, K. B., Deng, K. K., & Guo, Y. C. (2019). Effect of extrusion parameters on microstructure, texture and mechanical properties of Mg-1.38Zn-0.17Y-0.12Ca (at.%) alloy. Materials Characterization, 151, 137-145.
https://doi.org/10.1016/j.matchar.2019.03.004.
[25] Pai, Y.-H., & Fang, S.-Y. (2013). Preparation and characterization of porous Nb2O5 photocatalysts with CuO, NiO and Pt cocatalyst for hydrogen production by light-induced water splitting. Journal of Power Sources, 230, 321–326.
https://doi.org/10.1016/j.jpowsour.2012.12.078.
[26] Koju, R. K., & Mishin, Y. (2020). Atomistic study of grain-boundary segregation and grain-boundary diffusion in Al-Mg alloys. Acta Materialia. https://doi.org/10.1016/j.actamat.2020.10.029.
[27] Park, S. H., You, B. S., Mishra, R. K., & Sachdev, A. K. (2014). Effects of extrusion parameters on the microstructure and mechanical properties of Mg-Zn-(Mn)-Ce/Gd alloys. Materials Science and Engineering: A, 598, 396-406.
http://doi.org/10.1016/j.msea.2014.01.051.
[28] Park, S. S., You, B. S., & Yoon, D. J. (2009). Effect of the extrusion conditions on the texture and mechanical properties of indirect-extruded Mg-3Al-1Zn alloy. Journal of Materials Processing Technology, 209(18-19), 5940-5943.
https://doi.org/10.1016/j.jmatprotec.2009.07.012.
[29] Gao, X., & Nie, J. F. (2007). Characterization of strengthening precipitate phases in a Mg-Zn alloy. Scripta Materialia, 56(8), 645-648.
https://doi.org/10.1016/j.scriptamat.2007.01.006.
[30] Zhang, A., Kang, R., Wu, L., Pan, H., Xie, H., Huang, Q., Liu, Y., Ai, Z., Ma, L., Ren, Y., Qin, G. (2019). A new rare-earth-free Mg-Sn-Ca-Mn wrought alloy with ultra-high strength and good ductility. Materials Science and Engineering: A, 754, 269-274. https://doi.org/10.1016/j.msea.2019.03.095.
[31] Pan, H., Qin, G., Huang, Y., Ren, Y., Sha, X., Han, X., Liu, Z., Li, C., Wu, X., Chen, H., He, C., Chai, L., Wang, Y., Nie, J. (2018). Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength. Acta Materialia, 149, 350-363. https://doi.org/10.1016/j.actamat.2018.03.002.
[32] Doherty, R. D., Hughes, D. A., Humphreys, F. J., Jonas, J. J., Jensen, D. J., Kassner, M. E., King, W. E., McNelley, T. R., McQueen, H. J., Rollett, A. D. (1997). Current issues in recrystallization: a review. Materials Science and Engineering: A, 238(2), 219-274. https://doi.org/10.1016/S0921-5093(97)00424-3.
[33] Xu, S. W., Oh-ishi, K., Kamado, S., & Homma, T. (2011). Twins, recrystallization and texture evolution of a Mg–5.99Zn–1.76Ca–0.35Mn (wt.%) alloy during indirect extrusion process. Scripta Materialia, 65(10), 875–878.
https://doi.org/10.1016/j.scriptamat.2011.07.053.
[34] Steiner, M. A., Bhattacharyya, J. J., & Agnew, S. R. (2015). The origin and enhancement of {0001}〈112¯0〉 texture during heat treatment of rolled AZ31B magnesium alloys. Acta Materialia, 95, 443–455. https://doi.org/10.1016/j.actamat.2015.04.043.
[35] Jin, X., Xu, W., Yang, Z., Yuan, C., Shan, D., Teng, B., & Jin, B. C. (2020). Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy. Journal of Materials Science & Technology, 45, 133–145. https://doi.org/10.1016/j.jmst.2019.11.021.
[36] Jiang, M. G., Xu, C., Yan, H., Fan, G. H., Nakata, T., Lao, C. S., Chen, R. S., Kamado, S., Han, E. H., Lu, B. H. (2018). Unveiling the formation of basal texture variations based on twinning and dynamic recrystallization in AZ31 magnesium alloy during extrusion. Acta Materialia, 157, 53–71. https://doi.org/10.1016/j.actamat.2018.07.014.
[37] Nie, J. F. (2003). Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scripta Materialia, 48(8), 1009–1015.
https://doi.org/10.1016/S1359-6462(02)00497-9.
[38] Xu, S. W., Oh-ishi, K., Sunohara, H., & Kamado, S. (2012). Extruded Mg–Zn–Ca–Mn alloys with low yield anisotropy. Materials Science and Engineering: A, 558, 356–365. https://doi.org/10.1016/j.msea.2012.08.012.
[39] She, J., Peng, P., Xiao, L., Tang, A. T., Wang, Y., & Pan, F. S. (2019). Development of high strength and ductility in Mg–2Zn extruded alloy by high content Mn-alloying. Materials Science and Engineering: A, 138203. https://doi.org/10.1016/j.msea.2019.138203.
[40] Wang, X.-Y., Wang, Y.-F., Wang, C., Xu, S., Rong, J., Yang, Z.-Z., Wang, J.-G., Wang, H.-Y. (2020). A simultaneous improvement of both strength and ductility by Sn addition in as-extruded Mg-6Al-4Zn alloy. Journal of Materials Science & Technology. https://doi.org/10.1016/j.jmst.2019.04.048.
[41] Liu, C., Chen, X., Chen, J., Atrens, A., & Pan, F. (2020). The effects of Ca and Mn on the microstructure, texture and mechanical properties of Mg-4Zn alloy. Journal of Magnesium and Alloys. https://doi.org/10.1016/j.jma.2020.03.012.
[42] Wang, B., Wang, F., Wang, Z., Zhou, L., Liu, Z., & Mao, P. (2020). Microstructure and mechanical properties of Mg-Zn-Ca-Zr alloy fabricated by hot extrusion-shearing process. Materials Science and Engineering: A, 139937.
https://doi.org/10.1016/j.msea.2020.139937.
[43] Yu, H., Xin, Y., Wang, M., & Liu, Q. (2018). Hall-Petch relationship in Mg alloys: A review. Journal of Materials Science & Technology, 34(2), 248–256.
https://doi.org/10.1016/j.jmst.2017.07.022.
[44] Nie, K.-B., Zhu, Z.-H., Munroe, P., Deng, K.-K., & Han, J.-G. (2020). Microstructure, Tensile Properties and Work Hardening Behavior of an Extruded Mg–Zn–Ca–Mn Magnesium Alloy. Acta Metallurgica Sinica (English Letters).
https://doi.org/10.1007/s40195-020-01061-9.
Published
2022/10/01
How to Cite
Yang, A., Nie, K.- bo, Deng, K.-K., Han, J.- gang, Xiao, T., & Han, X. (2022). Microstructures and tensile properties of Mg-2Zn-0.8Sr-0.2Ca alloy extruded at relatively slow speed and low temperature. Journal of Mining and Metallurgy, Section B: Metallurgy, 58(2), 203-218. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/31505
Section
Original Scientific Paper