Ab-initio combined Calphad approach to the phase equilibria in the ternary Ti-Mo-N system

  • Renato A. Daclan Department of Mining, Metallurgical, and Materials Engineering, College of Engineering, University of the Philippines-Diliman, Philippines.
  • Manolo G. Mena Department of Mining, Metallurgical, and Materials Engineering, College of Engineering, University of the Philippines-Diliman, Philippines.
  • Magdaleno R. Vasquez Department of Mining, Metallurgical, and Materials Engineering, College of Engineering, University of the Philippines-Diliman, Philippines.
  • Wojciech Gierlotka Department of Materials Science and Engineering, National Dong Hwa University
Keywords: ab initio, Caphad, phase diagram, Mo, Ti, N

Abstract


The ternary Ti-Mo-N system is an important material that has found applications as a surface coating, hardener, and wear and corrosion protective coating. Knowledge of phase equilibria, phase transformations and phase stabilities of this alloy is important to realize its potential application. In this paper, ab-initio calculations along with Calphad modeling were used to determine the Gibbs energies of all phases existing in this industrially important system. The calculated Gibbs energies were used to calculate and construct the phase diagrams and thermodynamic properties of the Ti-Mo-N system. The present model is in good agreement with literature values. The results of this work can be used as foundation for future investigations on the Ti-Mo-N system as well as basis for practical industrial applications.

References

[1] Fromm E., Jehn H., "Gleichgewichte und Entgasungskinetik in den Systemen Mo-N, W-N und Re-N (Ger.)," Hight Temp.-High Pressures, vol. 3, no. 5, pp. 553-564, 1971.
[2] Jehn H., Ettmayer P., "The Molybnedum-Nitrogen phase diagram," J. Less-Common Metalls, vol. 58, pp. 85-98, 1978.
[3] Neumann B., Kroger C., Kunz H., "Die Bildungswärmen der Nitride. V. Die Verbrennungswärmen einiger Metalle und Metallnitride (in Ger.)," Z. Anorg. Allg. Chem., no. 218, pp. 379-401, 1934.
[4] Mah A.D., "Rep. Invest. No. 5529," U. S. Bur. Mines, 1969.
[5] Satoh S., Sc. Pap. Inst. Phys. Chem. Res., vol. 34, p. 1001, 1938.
[6] Ettmayer P., "The system Mo - N," Monatshefte fur Chemie, vol. 101, pp. 127 - 140, 1970.
[7] Schonberg N., "Contributions to the knowledge of the Molybdenum-Nitrogen and Tungsten-Nitrogen Systems," Acta Chem. Scand., no. 8, pp. 204-207, 1954.
[8] Troitskaya N.V., Pinsker Z.G, "The hexagonal nitrides of molybdenum," Kristallografiya, vol. 6, pp. 43-48, 1961.
[9] Massalski T. B., Subramanian P. R., Okamoto H, Kacprzak L., "Binary alloy phase diagrams," in Binary Alloy Phase Diagrams, Metal Park, Ohio, ASM International, 1990.
[10] Klimashin F. F., Kotuna N., Euchner H, Holec D., Mayrhofer P. H., "The impact of nitrogen content and vacancies on structure and mechanical properties of Mo-N thin films," J. Appl. Phys., vol. 120, p. 185301, 2016.
[11] Domke H, Frohberg M. G., "Determination of the solubility of nitrogen in liquid molybdenum," Z. Metallkde, vol. 65, no. 9, pp. 615-617, 1974.
[12] Frisk K., "A thermodynamic evaluation of the Ce-N, Fe-N, Mo-N and Cr-Mo-N systems," Calphad, vol. 15, no. 1, pp. 79-106, 1991.
[13] Murray J. L, "The Mo-Ti (Molybdenum-Titanium) System," Bulletin of Alloy Phase Diagrams, vol. 2, pp. 185-192, 1981.
[14] Hansen M., Kamen E. L., Kessler H. D., "Systems Titanium-Molybdenum and Titanium-Columbium," Trans. AIME, vol. 191, pp. 881-888, 1951.
[15] Flower H. M., Henry S. D., West D. R. F., "The alpha-beta transformation in dilute Ti-Mo alloys," J. Mater. Sci, vol. 9, pp. 57-60, 1974.
[16] Dupouy J. M., Averbach B. L., "Atomic arrangements in titanium-molybdenum solid solution," Acta Metall., vol. 9, pp. 755-763, 1961.
[17] Morniroli J. P., Gantois M., "Formation conditions for the omega phase of titanim-niobium and titanium-molybdenum alloys," Mam. Sci. Rev. Met, vol. 11, pp. 831-842, 1973.
[18] Chandrasekar V, Taggart R., Polonis D. H., "Phase separation process in beta phase of Ti-Mo binary system," Metallogr., vol. 5, pp. 393-398, 1972.
[19] Terauchi S., Matsumoto H., Sugimoto T, Kamei K., "Investigation of the Titanium-Molybdenum Binary Phase Diagram," J. Jpn. Inst. Met., vol. 41, pp. 632-637, 1977.
[20] Rudy E., "Compilation of Phase Diagram Data, Techical Rept. AFML-TR-62-2 Part V," Wright Paterson Air Force Base, 1969.
[21] Kuz'min A. A., Palatnik L. S., "Vapour pressure of titanium over Ti-Mo alloys," Phys. Met. Matallogr., vol. 14, pp. 142-144, 1962.
[22] Hoch M., Viswanathan R., "Thermodynamocs of titanium alloys III: the Ti-Mo system.," Metall. Trans., vol. 1971, pp. 2765-2767, 2.
[23] Yao K, Min X. Shi S., Tan Y., "Volatilization Behavior of β-Type Ti-Mo Alloy Manufactured by Electron Beam Melting," Metals, vol. 8, pp. 206-220, 2018.
[24] Raabe D., Sander B., Friak M., Ma D., Neugebauer J., "Theory-guided bottom-up design of b-titanium alloys as biomaterials based on first principles calculations: Theory and experiments," Acta Mater., vol. 55, pp. 4475-4487, 2007.
[25] Marker C., Shang S.-L., Zhao J.-C., Liu Z.-K., "Thermodynamic description of the Ti-Mo-Nb-Ta-Zr system and its implications for phase stability of Ti bio-implant materials," Calphad, vol. 61, pp. 72-84, 2018.
[26] Santhy K., Hari Kumar K. C., "Thermodynamic assessment of Mo-Ni-Ti ternary system by coupling first-principle calculations with CALPHAD approach," Intermetallics, vol. 18, pp. 1713-1721, 2010.
[27] Zeng K, Schmid-Fetzer R., "Critical Assessment and Thermodynamic Modeling of the Ti-N System," Z. Metallkd., vol. 87, pp. 540-554, 1996.
[28] Chung H.-J., Shim J.-H., Lee D. N., "Thermodynamic evaluation and calculation of phase equilibria of the Ti-Mo-C-N quaternary system.," J. Alloys Compd., vol. 282, pp. 142-148, 1999.
[29] Ansara I., Dinsdale A. T., Rand M. H., "COST 507: Thermodynamic Database for Light Metal Alloys," European Communities, Brussels and Luxembourg, 1998.
[30] Sridar S., Kumar R., Hari Kumar K. C., "Thermodynamic modeling of Ti-Zr-N system," Calphad, vol. 56, pp. 102-107, 2017.
[31] Barabash O. M., Shurin A. K., "Fazovye ravnovesiya v splavakh Mo-Ti-N i Mo-Hf-N," Izv AN SSSR Metally, vol. 4, pp. 243-246, 1978.
[32] Ettmayer P., Hormanseder W., "Phase equilibria between high melting nitrides and refractory binder metals," High Temp. High Press., vol. 18, pp. 161-172, 1986.
[33] Lengauer W., Ettmayer P., "Investigation of phase equilibria in the Ti-N and Ti-Mo-N systems," Mater. Sci. Eng., vol. A105/106, pp. 257-263, 1988.
[34] Langauer W., Ullrich H. J., Ettmayer P., "Investigations in the ternary system Ti-Mo-N by means of EPMA and XRD," Mikrochim. Acta, vol. 1, pp. 211-218, 1987.
[35] Lengauer W. Ettmayer P., "An investigation of the Ti-Mo-N System at Low Nitrogen Activities," Z. Metallkd., no. 80, pp. 726-730, 1989.
[36] Holleck H., TBinäre und ternäre Carbid- und Nitridsysteme der Übergangsmetalle, Stuttgard-Berlin, Germany: Bebrüder Borntraeger, 1984.
[37] Gonze X., Beuken J.-M., Caracas R., Detraux F., Fuchs M., Rignanese G.-M., Sindic L.,Verstraete M., Zerah G., Jollet F., Torrent M., Roy A., Mikami M., Ghosez P., Raty J. Y., Allan D. C., "First-principles computation of material properties: The ABINIT software project," Computational Materials Science, vol. 25, pp. 478-492, 2002.
[38] Kresse G., Joubert D., "From ultrasoft pseudopotentials to the projector augmented-wave method," Phys. Rev. B, vol. 59, p. 1758, 1999.
[39] Padrew J. P., Burke K., Ernzerhof M., "Generalized Gradient Approximation Made Simple.," Phys. Rev. Lett., vol. 77, p. 3865, 1996.
[40] W. S.-H. F. L. G. B. J. E. Zunger A., "Special quasirandom structures," Phys. Rev. Lett., vol. 65, p. 353, 1990.
[41] van de Walle A., "Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit," Calphad, vol. 33, pp. 266-278, 2009.
[42] Scientific Group Thermodata Europe, "Unary Database v. 5.0," France, 2015.
[43] Scientific Group Thermodata Europe, "SGTE Substance Database 3.2," 2004.
[44] Wang Y, Curtarolo S., Jiang C., Arroyave R., Wang T., Ceder G., Chen L.-Q., Liu Z.-K., "Ab initio lattice stability in comparison with CALPHAD lattice stability," Calphad, vol. 28, pp. 79-90, 2004.
[45] "Materials Project," [Online]. Available: https://materialsproject.org. [Accessed 19 11 2019].
[46] "The Open Quantum Materials Database," [Online]. Available: http://www.oqmd.org. [Accessed 19 11 2019].
[47] "JARVIS National Institute of Standards and Technology," National Institute of Standards and Technology, [Online]. Available: https://www.ctcms.nist.gov/~knc6/JVASP.html. [Accessed 27 05 2020].
[48] Warlimont H., Martienssen W., Springer Handbook of Materials Data, Berlin Heidelberg: Springer, 2005.
[49] Oyama S. T., The Chemistry of Transition Metal Carbides and Nitrides, Glasgow: Blackie Academic & Professional, 2012.
[50] Kislitsin S. B., Potekaev A. I., Uglov V. V., Klopotov A. A., Klopotov V. D., Ivanov Y. F., Parpiev A. T., "Steel surface TiCrN, TiMoNcoatings structural phase state change features after low-energy alpha particles irradiation," vol. 289, no. 012010, 2018.
[51] Zhao G., Xu X. Li H, Wei H., Han D., Ji Z., Meng Y., Eang L., Yang S., "The immiscibility of InAlN ternary alloy," Scientific Report, no. 6:26600, 2016.
Published
2023/08/15
How to Cite
Daclan, R. A., Mena, M. G., Vasquez, M. R., & Gierlotka, W. (2023). Ab-initio combined Calphad approach to the phase equilibria in the ternary Ti-Mo-N system. Journal of Mining and Metallurgy, Section B: Metallurgy, 59(1), 125-136. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/31574
Section
Original Scientific Paper