Matte separated behavior from slag during the cleaning process by using waste cooking oil as carbon neutral reductant

  • Shiwei Zhou Kunming University of Science and Technology
  • Linchuan Wang
  • Yonggang Wei
  • Bo Li
  • Hua Wang
Keywords: waste cooking oil, reductant, copper slag, matte

Abstract


As a sustainable biomass resource, waste cooking oil (WCO) has not been widely used. Based on the cracking characteristics of WCO at high temperature, using WCO as a reductant to reduce the copper slag for cleaning was proposed. A series of laboratory-scale copper slag cleaning experiment was carried out. The matte separated behavior from slag during the reduction and sedimentation stage of copper slag cleaning by using WCO was studied in detail. The results indicate that the reduction of Fe3O4 mainly occurred in the injection stage, and majority of the matte particles were precipitated and separated. In the sedimentation stage, the content of Fe3O4 in the slag is low (< 3.5wt.%), which enhances the fluidity of the slag and makes the small matte particles finally sedimentation to the matte layer. The content of copper in the middle and upper slag is reduced to less than 0.57 wt.%, and the green cleaning of copper slag is realized.

References

[1] A.F. Ibragimov, I.I. Iskhakov, G.B. Skopov, A.N. Kirichenko, Metallurgist, 63(1-2) (2019) 62-69.
[2] G.T. Liu, L. Yan, X.L. Li, T.A. Zang, Numerical simulation on multiphase flow in the two side-blown oxygen-enriched copper smelting furnace, Springer, Cham, 2016, 179-186.
[3] X.Y. Guo, M. Tian, S.S. Wang, S.Y. Yan, Q.M. Wang, Z.S. Yuan, Q.H. Tian, D.X. Tang, Z.C. Li, JOM, 71(6) (2019) 3941-3948.
[4] Ž. Živković, N. Mitevska, I. Mihajlović, Đ. Nikolić, J. Min. Metall., Sect. B, 45(1) (2009) 23-34.
[5] B. Gorai, R.K. Jana, Premchand, Resour., Conserv. Recycl. 39(4) (2003) 299-313.
[6] H.Y. Tian, Z.Q. Guo, J. Pan, D.Q. Zhu, C.C. Yang, Y.X. Xue, S.W. Li, D.Z. Wang, Resour., Conserv. Recycl., 168 (2021) 105366.
[7] A. Warczok, G. Riveros, P. Echeverría, C.M. Díaz, H. Schwarze, G. Sánchez, Can. Metall. Q., 41 (2013) 465-473.
[8] H.P. Rajcevic, W.R. Opie, JOM, 34(3) (1982) 54-56.
[9] H.G. Kim, H.Y. Sohn, Can. Metall. Q., 36(1) (1997) 31-37.
[10] H. Yang, J. Wolters, P. Pischke, H. Soltner, S. Eckert, G. Natour, J. Fröhlich, IOP Conf. Ser.: Mater. Sci. Eng., 228 (2017) 012007.
[11] J.L. Xia, T. Ahokainen, Scand. J. Metall., 33(4) (2004) 220-228.
[12] A. Bakalarz, M. Duchnowska, R. Kubik, IOP Conf. Ser.: Mater. Sci. Eng., 427(1) (2018) 012006.
[13] M. Asghari, F. Nakhaei, O. Vandghorbany, Energy Sources, Part A, 41(1) (2018) 1-18.
[14] N. Karimi, R. Vaghar, M.R.T. Mohammadi, S.A. Hashemi, J. Inst. Eng. (India): Ser. D, 94(1) (2013) 43-50.
[15] H.T. Shen, E. Forssberg, Waste Manag., 23(10) (2003) 933-949.
[16] Z.L. Zuo, Q.B. Yu, H.Q. Xie, F. Yang, Q. Qin, J. Therm. Anal. Calorim., 132(2) (2018) 1277-1289.
[17] J. Singh, J. Cleaner Prod., 142(2) (2017) 3985-4000.
[18] M. Shahbaz, D. Balsalobre-Lorente, A. Sinha, J. Cleaner Prod., 217 (2019) 603-614.
[19] B.K. Barnwal, M.P. Sharma, Renewable Sustainable Energy Rev., 9(4) (2005) 363-378.
[20] U. Kumar, S. Maroufi, R. Rajarao, M. Mayyas, I. Mansuri, R.K. Joshi, V. Sahajwalla, J. Cleaner Prod., 158(15) (2017) 218-224.
[21] D. B. Guo, L.D. Zhu, S. Guo, B.H. Cui, S.P. Luo, M. Laghari, Z.H. Chen, C.F. Ma, Y. Zhou, J. Chen, B. Xiao, M. Hu, S.Y. Luo, Fuel Process. Technol., 148 (2016) 276-281.
[22] Sahar, S. Sadaf, J. Iqbal, I. Ullah, H.N. Bhatti, S. Nouren, Habib-ur-Rehman, J. Nisar, M. Iqbal, Sustain. Cities Soc., 41 (2018) 220-226.
[23] A. Tangy, I.N. Pulidindi, N. Perkas, A. Gedanken, Bioresour. Technol., 224 (2017) 333-341.
[24] A. Avinash, A. Murugesan, Energy Sources, Part B, 12(10) (2017) 890-894.
[25] K.V. Supraja, B. Behera, B. Paramasivan, Environ. Sci. Pollut. Res., 27(297) (2019) 1-12.
[26] Y. Wang, J.Y. Nie, M.M. Zhao, S. Ma, Energy Fuels, 24 (2010) 2104-2108.
[27] M.M. Khalaf, A.H. Tantawy, K.A. Soliman, H.M.A. El-Lateef, J. Mol. Struct., 1203 (2020) 127442.
[28] P. Pimenidou, G. Rickett, V. Dupont, M.V. Twigg, Bioresour. Technol., 101(23) (2010) 9279-9286.
[29] S.N. Gebremariam, J.M. Marchetti, Energy Convers. Manage., 168 (2018) 74-84.
[30] Y.G. Wei, T.F. Zhang, B. Li, S.W. Zhou, Metall. Mater. Trans. B, 51 (2020) 2756-2768.
[31] H.J. Grabke, Metall. Trans., 1(10) (1970) 2972-2975.
[32] S.W. Zhou, Y.G. Wei, Y. Shi, B. Li, H. Wang, Metall. Mater. Trans. B, 49 (2018) 2458-2468.
[33] E.D. Wilde, I. Bellemans, M. Campforts, M.X. Guo, B. Blanpain, N. Moelans, K. Verbeken, Metall. Mater. Trans. B, 47(6) (2016) 3421-3434.
[34] R. Sridhar, J.M. Toguri, S. Simeonov, Metall. Mater. Trans. B, 28(2) (1997) 191-200.
[35] P. Coursol, N. C. Valencia, P. Mackey, S. Bell, B. Davis, JOM, 64(11) (2012) 1305-1313.
[36] P.K. Iwamasa, R.J. Fruehan, ISIJ Int., 36(11) (1996) 1319-1327.
Published
2021/11/18
How to Cite
Zhou, S., Wang, L., Wei, Y., Li, B., & Wang, H. (2021). Matte separated behavior from slag during the cleaning process by using waste cooking oil as carbon neutral reductant. Journal of Mining and Metallurgy, Section B: Metallurgy, 57(3), 379-388. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/31735
Section
Original Scientific Paper