Effect of Zn content on corrosion behavior of Mg-Y-Zn alloys

  • yong shi
  • xiqin liu Nanjing University of Aeronautics and Astronautics
  • zili liu
  • huanjian xie
  • yunhao wang
  • jian li
Keywords: Mg-4Y-xZn alloys; Microstructure; corrosion behavior; electrochemical behavior

Abstract


The microstructure, corrosion behavior, and electrochemical behavior of as-cast Mg-4Y-xZn (x=1,2,3,4 wt.%) are studied by SEM, weight loss and electrochemical tests. Mg12YZn (X), Mg3Y2Zn3 (W) and Mg24Y5 constitute the phase composition system of the alloy. When Zn content is 1 wt.%, all tests reveal that alloy has the optimal corrosion performance. The second phase in these alloys, due to their nobler nature than α-Mg, exists as a cathode during the corrosion process, so that α-Mg preferentially occurs corrosion to accelerate the formation of corrosion pits. After soaking in 3.5 wt.% NaCl solution for some time, the stability of the W phase changed, and gradually dissolved, which was finally removed by chromic acid used for removal of corrosion products. In addition, X phase can be used as an anode in the micro-galvanic cells formed with W phase to reduce the corrosion rate of α-Mg and thus improve the corrosion performance of the alloy.

References

[1] X. J. Wang, D. K. Xu, R. Z. Wu, What is going on in magnesium alloys?, Journal of Materials Science & Technology, 34 (2) (2018), 245-247. https://doi.org/10.1016/j.jmst.2017.07.019
[2
] T. T. T. Trang, J. H. Zhang, J. H. Kim, Designing a magnesium alloy with high strength and high formability, Nature Comumications, 9 (1) (2018), 2522. https://doi.org/10.1038/s41467-018-04981-4
[3
] F. S. Pan, M. B. Yang, X. H. Chen, A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys, Journal of Materials Science & Technology, 32 (12) (2016) 1211-1221. http://dx.doi.org/10.1016/j.jmst.2016.07.001
[4
] B. Smola, I. Stulková, F. V. Buch, Structural aspects of high performance Mg alloys design, Materials Science and Engineering: A, 324 (1) (2002) 113-117. https://doi.org/10.1016/S0921-5093(01)01291-6
[5
] W. J. Joost, P. E. Krajewski, Towards magnesium alloys for high-volume automotive applications, Scripta Materialia, 128 (2017) 107-112. http://dx.doi.org/10.1016/j.scriptamat.2016.07.035
[6
] G. Song, A. Atrens, Understanding magnesium corrosion - A framework for improved alloy performance, Advanced Engineering Materials, 5 (12) (2003) 837-858. https://doi.org/10.1002/adem.200310405
[7
] M. Esmaily, J. E. Svensson, S. Fajardo, Fundamentals and advances in magnesium alloy corrosion, Progress in Materials Science, 89 (2017) 92-193. http://dx.doi.org/10.1016/j.pmatsci.2017.04.011
[8
] Y. Kawamura, K. Hayashi, A. Inoue, Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa, Materials Transactions, 42 (7) (2001) 1172-1176. https://doi.org/10.2320/matertrans.42.1172
[9
] T. Itoi, T. Seimiya, Y. Kawamura, Long period stacking structures observed in Mg97Zn1Y2 alloy, Scripta Materialia, 51 (2) (2004) 107-111. https://doi.org/10.1016/j.scriptamat.2004.04.003
[10
] X. H. Shao, Z. Q. Yang, X. L. Ma, Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure, Acta Materialia, 58 (14) (2010) 4760-4771. https://doi.org/10.1016/j.actamat.2010.05.012
[11
] Y. M. Zhu, A. J. Morton, J. F. Nie, The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys, Acta Materialia, 58 (8) (2010) 2936-2947. https://doi.org/10.1016/j.actamat.2010.01.022
[12
] H. J. Xie, Z. L. Liu, X. Q. Liu, Microstructure, generation of intermetallic compounds and mechanical strengthening mechanism of as-cast Mg-4Y-xZn alloys, Materials Science and Engineering: A, 797 (2020) 139948. https://doi.org/10.1016/j.msea.2020.139948
[13
] H. J. Xie, Z. L. Liu, X. Q. Liu, Effect of aluminum addition on lattice parameter, formation of intermetallic compounds and mechanical properties of Mg-4Y alloys, Materials Science and Engineering: A, 766 (2019) 138359. https://doi.org/10.1016/j.msea.2019.138359
[14
] Z. Q. Zhang, X. Liu, W. Y. Hu, Microstructures, mechanical properties and corrosion behaviors of Mg-Y-Zn-Zr alloys with specific Y/Zn mole ratios, Journal of Alloys and Compounds, 624 (2015) 116-125. http://dx.doi.org/10.1016/j.jallcom.2014.10.177
[15
] C. Q. Li, D. K. Xu, Z. R. Zeng, Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg-Zn-Y alloys, Materials & Design, 121 (2017) 430-441. http://dx.doi.org/10.1016/j.matdes.2017.02.078
[16
] L. Bao, Z. Q. Zhang, Q. C. Le, Corrosion behavior and mechanism of Mg-Y-Zn-Zr alloys with various Y/Zn mole ratios, Journal of Alloys and Compounds, 712 (2017) 15-23. http://dx.doi.org/10.1016/j.jallcom.2017.04.053
[17
] A. E. Coy, F. Viejo, P. Skeldon, Susceptibility of rare-earth-magnesium alloys to micro-galvanic corrosion, Corrosion Science, 52 (12) (2010) 3896-3906. https://doi.org/10.1016/j.corsci.2010.08.006
[18
] N. Hara, Y. Kobayashi, D. Kagaya, Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions, Corrosion Science, 46 (1) (2007) 166-175. https://doi.org/10.1016/j.corsci.2006.05.033
[19
] S. Izumi, M. Yamasaki, Y. Kawamupa, Relation between corrosion behavior and microstructure of Mg-Zn-Y alloys prepared by rapid solidification at various cooling rates, Corrosion Science, 51 (2) (2009) 395-402. https://doi.org/10.1016/j.corsci.2008.11.003
[20
] M. Liu, P. Schmutz, P. J. Uggowitzer, The influence of yttrium (Y) on the corrosion of Mg–Y binary alloys, Corrosion Science, 52 (11) (2010) 3687-3701. https://doi.org/10.1016/j.corsci.2010.07.019
[21
] Y. W. Song, D.Y. Shan, R. S. Chen, Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy, Corrosion Science, 52 (5) (2010) 1830-1837. https://doi.org/10.1016/j.corsci.2010.02.017
[22
] M. Yamasaki, S. Izumi, Y. Kawamura, Corrosion and passivation behavior of Mg-Zn-Y-Al alloys prepared by cooling rate-controlled solidification, Applied Surface Science, 257 (19) (2011) 8258-8267. https://doi.org/10.1016/j.apsusc.2011.01.046
[23
] J. Zhu, X. H. Chen, L. Wang, High strength Mg-Zn-Y alloys reinforced synergistically by Mg12ZnY phase and Mg3Zn3Y2 particle, Journal of Alloys and Compounds, 703 (2017) 508-516. http://dx.doi.org/10.1016/j.jallcom.2017.02.012
[24
] S. Q. Luo, A. T. Tang, Effect of mole ratio of Y to Zn on phase constituent of Mg-Zn-Zr-Y alloys, Transactions of Nonferrous Metals Society of China, 21 (4) (2011) 795-800. https://doi.org/10.1016/S1003-6326(11)60783-8
[25
] Z. Q. Zhang, X. Liu, Z. K. Wang, Effects of phase composition and content on the microstructures and mechanical properties of high strength Mg-Y-Zn-Zr alloys, Materials & Design, 88 (2015) 915-923. http://dx.doi.org/10.1016/j.matdes.2015.09.087
[26
] Z. H. Huang, S. M. Liang, R. S. Chen, Solidification pathways and constituent phases of Mg-Zn-Y-Zr alloys, Journal of Alloys and Compounds, 468 (1-2) (2009) 170-178. https://doi.org/10.1016/j.jallcom.2008.01.034
[27
] B. Chen, D. L. Lin, X. Q. Zeng, Effects of yttrium and zinc addition on the microstructure and mechanical properties of Mg-Y-Zn alloys, Journal of Materials Science, 45 (9) (2010) 2510-2517. https://doi.org/10.1007/s10853-010-4223-z
[28
] J. Gröbner, A. Kozlov, X. Y. Fang, Phase equilibria and transformations in ternary Mg-rich Mg-Y-Zn alloys, Acta Materialia, 60 (17) (2012) 5948-5962. http://dx.doi.org/10.1016/j.actamat.2012.05.035
[29
] S. D. Wang, D. K. Xu, X. B. Chen, Effect of heat treatment on the corrosion resistance and mechanical properties of an as-forged Mg-Zn-Y-Zr alloy, Corrosion Science, 92 (2015) 228-236. http://dx.doi.org/10.1016/j.corsci.2014.12.008
[30
] S. Q. Yin, W. C. Duan, W. H. Liu, Influence of specific second phases on corrosion behaviors of Mg-Zn-Gd-Zr alloys, Corrosion Science, 166 (2020) 108419. https://doi.org/10.1016/j.corsci.2019.108419
[31
] J. Liu, L. X. Yang, C. Y. Zhang, Significantly improved corrosion resistance of Mg-15Gd-2Zn-0.39Zr alloys: Effect of heat-treatment, Journal of Materials Science & Technology, 35 (8) (2019) 1644-1654. https://doi.org/10.1016/j.jmst.2019.03.027
[32
] J. Liu, L. X. Yang, C. Y. Zhang, Role of the LPSO structure in the improvement of corrosion resistance of Mg-Gd-Zn-Zr alloys, Journal of Alloys and Compounds, 782 (2019) 648-658. https://doi.org/10.1016/j.jallcom.2018.12.233
[33
] S. Leleu, B. Rives, J. Bour, On the stability of the oxides film formed on a magnesium alloy containing rare-earth elements, Electrochimica Acta, 290 (2018) 586-594. https://doi.org/10.1016/j.electacta.2018.08.093
[34
] A. Srinivasan, C. Blawert, Y. Huang, Corrosion behavior of Mg-Gd-Zn based alloys in aqueous NaCl solution, Journal of Magnesium and Alloys, 2 (2014) 245-256. https://doi.org/10.1016/j.jma.2014.08.002
[35
] W. C. Neil, M. Forsyth, P. C. Howlett, Corrosion of magnesium alloy ZE41—The role of microstructural features, Corrosion Science, 51 (2009) 387-394. https://doi.org/10.1016/j.corsci.2008.11.005
[36
] W. C. Neil, M. Forsyth, P. C. Howlett, Corrosion of heat treated magnesium alloy ZE41, Corrosion Science, 53 (2011) 3299-3308. https://doi.org/10.1016/j.corsci.2011.06.005
[37
] Z. Y. Ding, L. Y. Cui, R. C. Zeng, Exfoliation corrosion of extruded Mg-Li-Ca alloy, Journal of Materials Science & Technology, 34 (2018) 1550-1557. https://doi.org/10.1016/j.jmst.2018.05.014
[38
] G. J. Gao, M. Q. Zeng, E. L. Zhang, Dealloying corrosion of anodic and nanometric Mg41Nd5 in solid solution-treated Mg-3Nd-1Li-0.2Zn alloy, Journal of Materials Science & Technology, 83 (2021) 161-178. https://doi.org/10.1016/j.jmst.2020.12.049
[39
] J. F. Wang, W. Y. Jiang, Y. Ma, Substantial corrosion resistance improvement in heat-treated Mg-Gd-Zn alloys with a long period stacking ordered structure, Materials Chemistry and Physics, 203 (2018) 352-361. https://doi.org/10.1016/j.matchemphys.2017.09.035
[40
] J. H. Liu, Y. W. Song, J. C. Chen, The special role of anodic second phases in the micro-galvanic corrosion of EW75 Mg alloy, Electrochimica Acta, 189 (2016) 190-195. https://doi.org/10.1016/j.electacta.2015.12.075
[41
] Z. G. Yang, W. P. Liang, Y. L. Jia, Corrosion behavior of double-glow plasma copperizing coating on Q235 steel, Journal of Mining and Metallurgy, Section B: Metallurgy, 56 (2020) 257-268. https://doi.org/10.2298/JMMB190820017Y
[42
] L. S. Wang, J. H. Jiang, H. Liu, Microstructure characterization and corrosion behavior of Mg-Y-Zn alloys with different long period stacking ordered structures, Journal of Magnesium and Alloys, 8 (2020) 1208. https://doi.org/10.1016/j.jma.2019.12.009

Published
2022/01/19
How to Cite
shi, yong, liu, xiqin, liu, zili, xie, huanjian, wang, yunhao, & li, jian. (2022). Effect of Zn content on corrosion behavior of Mg-Y-Zn alloys. Journal of Mining and Metallurgy, Section B: Metallurgy, 58(1), 51-61. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/32409
Section
Original Scientific Paper