Thermodynamic assessment of the Co-Mg binary system

  • Lianfeng Yang Central South University, State Key Laboratorey of Powder Metallurgy, Changsha, Hunan, China
  • Xudong Si Central South University, State Key Laboratorey of Powder Metallurgy, Changsha, Hunan, China
  • Huaqing Zhang Central South University, State Key Laboratorey of Powder Metallurgy, Changsha, Hunan, China
  • Fengyang Gao Central South University, State Key Laboratorey of Powder Metallurgy, Changsha, Hunan, China
  • Yinping Zeng Central South University
  • Yuling Liu Central South University, State Key Laboratorey of Powder Metallurgy, Changsha, Hunan, China
  • Yaru Wang Shijiazhuang Tiedao University, Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, School of Materials Science and Engineering, Shijiazhuang, Hebei, China
  • Yong Du Central South University, State Key Laboratorey of Powder Metallurgy, Changsha, Hunan, China
Keywords: Co-Mg binary system, Phase diagram, Thermodynamic property, CALPHAD method

Abstract


No thermodynamic description was performed for the Co-Mg binary system according to literature review. Consequently, this binary system has been investigated by means of CALPHAD (CALculation of PHAse Diagrams) approach in the present work. The experimental phase diagram and thermodynamic data available in the literature were critically assessed. Based on the reliable literature data, a new set of self-consistent thermodynamic parameters for the Co-Mg system is obtained. The calculated results agree well with the experimental data from the literature, indicating the reasonability of the present thermodynamic optimization.

References

[1] V.V. Shtender, V.V. Pavlyuk, O.Y. Zelinska, W. Nitek, V. Paul-Boncour, G.S. Dmytriv, W. Łasocha, I.Y. Zavaliy, The Y–Mg–Co ternary system: alloys synthesis, phase diagram at 500 °C and crystal structure of the new compounds, Journal of Alloys and Compounds, 812 (2020) 152072. https://doi.org/10.1016/j.jallcom.2019.152072
[2
] V.V. Shtender, R.V. Denys, V. Paul-Boncour, A.B. Riabov, I.Y. Zavaliy, Hydrogenation properties and crystal structure of YMgT4 (Т = Co, Ni, Cu) compounds, Journal of Alloys and Compounds, 603 (1) (2014) 7-11. http://dx.doi.org/10.1016/j.jallcom.2014.03.030
[3
] V.V. Shtender, R.V. Denys, I.Y. Zavaliy, O.Y. Zelinska, V. Paul-Boncour, V.V. Pavlyuk, Phase equilibria in the Tb-Mg-Co system at 500 °C, crystal structure and hydrogenation properties of selected compounds, Journal of Solid State Chemistry, 232 (2015) 228-235. http://dx.doi.org/10.1016/j.jssc.2015.09.031
[4
] Y. Plevachuk, V. Sklyarchuk, G. Pottlacher, A. Yakymovych, O. Tkach, Thermophysical properties of some liquid binary Mg-based alloys, Journal of Mining and Metallurgy, Section B: Metallurgy, 53 (3) (2017) 279-284. https://doi.org/10.2298/JMMB170622029P
[5
] J.L. Bobet, E. Gaudin, S. Couillaud, New Ternary Intermetallics Based on Magnesium for Hydrogen Storage, Springer, Berlin, (2018).
[6] A. Zaluska, L. Zaluski, J.O. Ström–Olsen, Nanocrystalline magnesium for hydrogen storage, Journal of Alloys and Compounds, 288 (1-2) (1999) 217-225. https://doi.org/10.1016/S0925-8388(99)00073-0
[7
] C. Demminger, C. Klose, P. Taptimthong, H.J. Maier, Material-inherent data storage using magnetic magnesium-cobalt Alloys, Procedia Technology, 15 (2014) 188-197. https://doi.org/10.1016/j.protcy.2014.09.071
[8
] C. Klose, G. Mroz, G.L. Angrisani, K. Kerber, Casting process and comparison of the properties of adapted load-sensitive magnesium alloys, Production Engineering, 7 (1) (2013) 35-41. https://doi.org/10.1007/s11740-012-0413-7
[9
] H. Yamada, H. Shimizu, Magnetic states of MgCo2 and CaCo2 with the cubic and hexagonal Laves phase structures, Journal of Alloys and Compounds, 388 (1) (2005) 15-18. https://doi.org/10.1016/j.jallcom.2004.07.002
[10
] J.P. Wetherill, Magnesium-cobalt alloys, Chemistry of Metals and Alloys, 6 (1935) 153-155.
[11] E.M. Cramer, H.P. Nielsen, F.W. Schonfeld, The alloys of magnesium and cobalt, Light Metal Age, 5 (1947) 6-9.
[12] G.V. Raynor, The physical metallurgy of magnesium and its alloys, Pergamon Press, New York, (1959).
[13] J.F. Smith, M.J. Smith, Magnesium-cobalt phase relationships and the thermodynamics of formation of MgCo2, ASM Transactions Quarterly, 57 (1964) 337-345.
[14] H.H. Stadelmaier, T.S. Yun, Ternary alloys of nitrogen and manganese, iron, cobalt, and nickel with magnesium, aluminum, zinc, and cadmium, Zeitschrift fuer Metallkunde, 52 (1961) 477-480.
[15] A.A. Nayeb-Hashemi, J.B. Clark, The Co-Mg (Cobalt-Magnesium) system, Bulletin of Alloy Phase Diagrams, 8 (4) (1987) 352-355. https://doi.org/10.1007/BF02869272
[16
] M. Tang, Y. Du, P. Zhou, S. Wang, H. Zhang, Y. Zeng, S. Liu, X. Chai, Y. Peng, C. Wu, X. Su, Z.-K. Liu, Experimental phase diagram, thermodynamic modeling and solidified microstructure in the Mo–Ni–W ternary system, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 68 (2020) 101748. https://doi.org/10.1016/j.calphad.2020.101748
[17
] C. Shi, Y. Du, B. Hu, B. Yang, Y. Pan, F. Guo, S. Liu, Q. Du, Thermodynamic descriptions of the Ag-X (X = S, As, Lu) systems, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 62 (2018) 207-214. https://doi.org/10.1016/j.calphad.2018.07.004
[18
] C. Zhang, Y. Du, A novel thermodynamic model for obtaining solid-liquid interfacial energies, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 48 (12) (2017) 5766-5770. https://doi.org/10.1007/s11661-017-4365-6
[19
] P. Zolliker, K. Yvon, P. Fischer, J. Schefer, Dimagnesium cobalt(I) pentahydride, Mg2CoH5, containing square-pyramidal CoH54- anions, Inorganic Chemistry, 24 (24) (1985) 4177-4180. https://doi.org/10.1021/ic00218a039
[20
] E.J. Ivanov, I. Konstanchuk, A. Stepanov, M. Pezat, Y. Jie, The ternary system Mg-Co-H, Inorganic Chemistry, 28 (1989) 613-615.
[21] R. Cerny, F. Bonhomme, K. Yvon, P. Fischer, P. Zolliker, D.E. Cox, A. Hewat, Hexamagnesium dicobalt undecadeuteride Mg6Co2D11: containing (CoD4)5- and (CoD5)4- complex anions conforming to the 18-electron rule, Journal of Alloys and Compounds, 187 (1) (1992) 233-241. https://doi.org/10.1016/0925-8388(92)90537-J
[22
] M. Yoshida, F. Bonhomme, K. Yvon, P. Fischer, On the composition and structure of the cubic g-phase in the Mg-Co-H system, Journal of Alloys and Compounds, 190 (2) (1993) 45-46. https://doi.org/10.1016/0925-8388(93)90389-5
[23
] F.C. Gennari, J.C. Facundo, Formation, composition and stability of Mg–Co compounds, Journal of Alloys and Compounds, 396 (1) (2005) 182-192. https://doi.org/10.1016/j.jallcom.2004.12.027
[24
] V.F. Serebryakov, A.F. Sidorov, Phase study in the magnesium-cobalt system, Tsvetnaya Metallurgiya, 14 (1) (1971) 5-37.
[25] R. Hultgren, P.D. Desal, D.T. Hawkins, M. Gleiser, K.K. Kelley, Selected values of the thermodynamic properties of binary alloys, Transactions of the American Society for Metals, (1973).
[26] https://materialsproject.org/
[27
] A.T. Dinsdale, SGTE data for pure elements, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 15 (4) (1991) 317-425. https://doi.org/10.1016/0364-5916(91)90030-N
[28
] O. Redlich, A.T. Kister, Thermodynamics of nonelectrolyte solutions, Industrial and Engineering Chemistry, 40 (2) (1948) 341-345. https://doi.org/10.1021/ie50458a035
[29
] Y.Y. Huang, B. Wu, F. Li, L.L. Chen, Z.X. Deng, K. Chang, First-principles and CALPHAD-type study of the Ir-Mo and Ir-W systems, Journal of Mining and Metallurgy, Section B: Metallurgy, 56 (1) (2020) 109-118. https://doi.org/10.2298/JMMB190211001H
[30
] B. Sundman, B. Jansson, J.-O. Andersson, The thermo-calc databank system, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 9 (2) (1985) 153-190. https://doi.org/10.1016/0364-5916(85)90021-5
[31
] Z.X. Deng, D.P. Zhao, Y.Y. Huang, L.L. Chen, H. Zou, Y. Jiang, K. Chang, AB initio and CALPHAD-type thermodynamic investigation of the Ti-Al-Zr system, Journal of Mining and Metallurgy, Section B: Metallurgy, 55 (3) (2019) 427-437. https://doi.org/10.2298/JMMB181022039D
[32
] T. Cheng, L.J. Zhang, Thermodynamic re-assessment of the Al-Sn-Zn ternary system, Journal of Mining and Metallurgy, Section B: Metallurgy, 55 (3) (2019) 439-449. https://doi.org/10.2298/JMMB190320036C
[33
] H. Okamoto, Reevaluation of thermodynamic models for phase diagram evaluation, Journal of Phase Equilibria, 12 (6) (1991) 623-643. https://doi.org/10.1007/BF02645160

Published
2022/01/19
How to Cite
Yang, L., Si, X., Zhang, H., Gao, F., Zeng, Y., Liu, Y., Wang, Y., & Du, Y. (2022). Thermodynamic assessment of the Co-Mg binary system. Journal of Mining and Metallurgy, Section B: Metallurgy, 58(1), 109-115. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/32635
Section
Letters to Editor