Antimony recovery from recycled terminals of lead-acid batteries with Na2CO3 and SiC after the formation of Sb2O3

  • Juan Cancio Jiménez-Lugos Instituto Politécnico Nacional - ESIQIE
  • Ricardo Gerardo Sánchez-Alvarado Instituto Politécnico Nacional - ESIQIE
  • Alejandro Cruz-Ramírez Instituto Politécnico Nacional - ESIQIE https://orcid.org/0000-0002-0972-596X
  • José Antonio Romero-Serrano Instituto Politécnico Nacional - ESIQIE
  • Aurelio Hernández-Ramírez Instituto Politécnico Nacional - ESIQIE
  • Jorge Enrique Rivera-Salinas Centro de Investigación en Química Aplicada - CIQA
Keywords: Antimony, reduction, slag, batteries, thermodynamics

Abstract


Terminals obtained from spent lead-acid batteries in Mexico contain around 2 wt% Sb. The terminals were melted in an electric furnace and then oxygen was injected at 750 °C with a gas flow rate of 2 L/min to produce high purity Sb2O3. The antimony trioxide obtained was treated with a mixture of Na2CO3-SiC at 1000 °C to obtain metallic antimony. The antimony trioxide was reduced by C present in reagents while silicon and sodium formed a slag phase. The amounts of Sb2O3 and SiC were held constant while the Na2CO3 was evaluated in the range from 30 to 42 wt%. The produced antimony and slag were characterized by the X-ray diffraction and SEM-EDS techniques. The addition of 34 wt% Na2CO3 led to the recovery of antimony up to 90.16 wt% (99.57 wt% purity) and the lowest antimony losses in the slag (2 wt%). In addition, the compounds Na2SiO3 and Na2Si2O5 formed in the slag indicated a more stable slag. Na2CO3 contents higher than 38 wt% decreased the antimony recovery since Na2Sb4O7 compound was promoted in the slag. The oxidation and reduction process was modeled in FactSage 7.3 software for a better understanding of the Na2CO3 and SiC additions on the antimony recovery rates and compounds formed in the slag.

Author Biographies

Juan Cancio Jiménez-Lugos, Instituto Politécnico Nacional - ESIQIE

Student of the doctoral program in Metallurgy and Materials

Ricardo Gerardo Sánchez-Alvarado, Instituto Politécnico Nacional - ESIQIE

Professor of Metallurgy

Alejandro Cruz-Ramírez, Instituto Politécnico Nacional - ESIQIE

Professor of Metallurgy

José Antonio Romero-Serrano, Instituto Politécnico Nacional - ESIQIE

Professor of Metallurgy

Aurelio Hernández-Ramírez, Instituto Politécnico Nacional - ESIQIE

Professor of Metallurgy

Jorge Enrique Rivera-Salinas, Centro de Investigación en Química Aplicada - CIQA

Researcher at the Applied Chemistry Research Center

References

[1] G. Gunn, Critical Metals Handbook, John Wiley & Sons, Oxford, UK, 2014, p70.
[2] C. Zhang, C. Catlow, The mechanism of propene oxidation to acrolein in iron antimony oxide, Journal of Catalysis, 259 (1) (2008) 17-25. https://doi.org/10.1016/j.jcat.2008.06.027
[3
] C. Anderson, The metallurgy of antimony, Chemie der Erde, 72 (S4) (2012) 3-8. https://doi.org/10.1016/j.chemer.2012.04.001
[4
] T. Liu, K. Qiu, Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology, Journal of Hazardous Materials, 347 (2018) 334-340. https://doi.org/10.1016/j.jhazmat.2018.01.017
[5
] R. Multani, T. Feldmann, G. Demopoulos, Antimony in the metallurgical industry: A review of its chemistry and environmental stabilization options, Hydrometallurgy, 164 (2016) 141-153. https://doi.org/10.1016/j.hydromet.2016.06.014
[6
] D. Lin, K. Qiu, Removal of arsenic and antimony from anode slime by vacuum dynamic flash reduction, Environmental Science and Technology, 45 (8) (2011) 3361-3366. https://doi.org/10.1021/es103424u
[7
] C. Anderson, Hydrometallurgically treating antimony-bearing industrial wastes, The Journal of The Minerals, Metals & Materials Society (TMS), 53 (2001) 18-20. https://doi.org/10.1007/s11837-001-0156-y
[8
] V. Krenev, N. Dergacheva, S. Fomichev, Antimony: Resources, application fields, and world market, Theoretical Foundations of Chemical Engineering, 49 (2015) 769-772. https://doi.org/10.1134/S0040579515050115
[9
] T. Ellis, A. Mirza, The refining of secondary lead for use in advanced lead-acid batteries, Journal of Power Sources, 195 (14) (2010) 4525-4529. https://doi.org/ 10.1016/j.jpowsour.2009.12.118
[10] D. Dupont, S. Arnout, P. Jones, K. Binnemans, Antimony recovery from end-of- life products and industrial process residues: A critical review, Journal of Sustainable Metallurgy, 2 (2016) 79-103. https://doi.org/10.1007/s40831-016-0043-y
[11
] W. Liu, T. Yang, D. Zhang, L. Chen, Y. Liu, A new pyrometallurgical process for producing antimony white from by-product of lead smelting, The Journal of The Minerals, Metals & Materials Society (TMS), 66 (9) (2014) 1694-1700. https://doi.org/10.1007/s11837-014-1026-8
[12
] D. Zhong, L. Li, Ch. Tan, Recovery of antimony from antimony-bearing dusts through reduction roasting process under CO-CO2 mixture gas atmosphere after firstly oxidation roasted, Journal of Central South University, 25 (2018) 1904-1913. https://doi.org/10.1007/s11771-018-3880-y
[13
] R. Padilla, L. Chambi, M. Ruiz, Antimony production by carbothermic reduction of stibnite in the presence of lime, Journal of Mining and Metallurgy, Section B-Metallurgy, 50 (1) (2014) 5-13. https://doi.org/10.2298/JMMB130604003P
[14
] J. Yang, Ch. Tang, Y. Chen, M. Tang, Separation of antimony from a stibnite concentrate through a low-temperature smelting process to eliminate SO2 emission, Metallurgical and Materials Transactions B, 42B (2011) 30-36. https://doi.org/10.1007/s11663-010-9453-6
[15
] B. Friederich, A. Arnold, F. Toubartz, Proceedings of European Metallurgical Conference, September 2011, Friedrichshafen, Germany, 2011, p. 295-317.
[16] J. Xu, J. Gao, L. Kong, B. Xu, B. Yang, D. Liu, Isobaric vapor-liquid equilibria of ternary lead-tin-antimony alloy system at 2 Pa, Journal of Mining and Metallurgy, Section B-Metallurgy, 56 (3) (2020) 327-335. https://doi.org/10.2298/JMMB190529026X
[17
] Z. Zhang, H. Nie, K. Yan, Sb distribution in the phases of SiO2 saturated Sb-Fe-O-SiO2-CaO system in air, Journal of Mining and Metallurgy, Section B-Metallurgy, 57 (1) (2021) 13-19. https://doi.org/10.2298/JMMB200406030Z
[18
] J. Barragan, C. Ponce, J. Alemán, A. Peregrina, F. Gómez, and E. Larios, Copper and antimony recovery from electronic waste by hydrometallurgical and electrochemical techniques, ACS Omega, 5 (2020) 12355–12363. https://doi.org/10.1021/acsomega.0c01100
[19
] J. Barragan, J. Alemán, A. Peregrina, M. Sánchez, E. Rivero, E. Larios, Leaching of metals from e‑waste: From its thermodynamic analysis and design to its implementation and optimization, ACS Omega, 6 (2021)12063-12071. https://doi.org/10.1021/acsomega.1c00724
[20
] A. Sánchez, V. Gutiérrez, A. Cruz, R. Sánchez, Lead production from recycled paste of lead acid batteries with SiC-Na2CO3, Russian Journal of Non-Ferrous Metals, 57 (4) (2016) 316-324. https://doi.org/10.3103/S1067821216040118
[21
] C. Bale, A. Pelton, W. Thompson. Facility for the Analysis of Chemical Thermodynamics (FactSage, v. 7.3), User’s Manual, (2018).
[22] G. Brooks, W. Rankin, N. Gray, Thermal separation of arsenic and antimony oxides, Metallurgical and Materials Transactions B, 25B (1994) 873-884. https://doi.org/10.1007/BF02662769
[23
] G. Brooks, Ph. D. Thesis, The University of Melbourne, Melbourne, Australia, 1993.
[24] A. Aracena, O. Jerez, C. Antonucci, Senarmontite volatilization kinetics in nitrogen atmosphere at roasting/melting temperatures, Transactions of Nonferrous Metals Society of China, 26 (1) (2016) 294-300. https://doi.org/10.1016/S1003-6326(16)64117-1
[25
] R. West, Oxocarbons, Academic Press, New York, USA, 1980, p. 3.
[26] Y. Hua, Y. Yang, F. Zhu, Volatilization kinetics of Sb2S3 in steam atmosphere, Journal of Materials Science and Technology, 19 (6) (2003), 619-622.
[27] W. Qin, H. Luo, W. Liu, Y. Zheng, K. Yang, J. Han, Mechanism of stibnite volatilization at high temperature, Journal of Central South University, 22 (2015) 868-873. https://doi.org/10.1007/s11771-015-2595-6

Published
2022/01/19
How to Cite
Jiménez-Lugos, J. C., Sánchez-Alvarado, R. G., Cruz-Ramírez, A., Romero-Serrano, J. A., Hernández-Ramírez, A., & Rivera-Salinas, J. E. (2022). Antimony recovery from recycled terminals of lead-acid batteries with Na2CO3 and SiC after the formation of Sb2O3. Journal of Mining and Metallurgy, Section B: Metallurgy, 58(1), 97-108. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/32769
Section
Original Scientific Paper