Synthesis of ZnO nanoparticles from electric arc furnace dust

  • Anh-Hoa Bui School of Materials Science and Engineering, Hanoi University of Science and Technology
  • Duc-Chinh Le School of Materials Science and Engineering, Hanoi University of Science and Technology
  • Thi-Thao Nguyen School of Materials Science and Engineering, Hanoi University of Science and Technology
Keywords: EAF dust; Hydrometallurgy; Zincite; Franklinite; ZnO nanoparticles


This paper presents a hydrometallurgical treatment of electric arc furnace (EAF) dust taken from a Vietnamese steelmaking plant to obtain zinc oxide (ZnO) nanoparticles by using aqueous ammoniac carbonate solution as a leaching agent. Characterization of the EAF dust was conducted by XRD technique, SEM observation, and manual wet chemical analysis. The results showed that total zinc (Zn) of the dust was 42.69 wt.% and existed mainly in the forms of zincite - ZnO, simonkolleite - Zn5(OH)8Cl2H2O, and franklinite - ZnFe2O4. The leached condition, in which the ammoniac carbonate concentration was 300 g/l and the time was 90 minutes, was found to provide the highest leaching efficiency of 85.29 % when the temperature was fixed at 60 oC and the ratio of solid/liquid was 1/6. After some steps of the subsequent treatment, the ZnO nanoparticles with the purity of 99.5 % and the size of 100 nm were obtained from thermal decomposition of zinc carbonate hydroxide - Zn5(CO3)2(OH)6.


1. T. Havlik, G. Maruskinova, A. Miskufova, Arch. Metall. Mater., 63 (2) (2018) 653-658. DOI: 10.24425/122390
2. I. Tsilika, P. Komninou, J Eur Ceram Soc., 27 (6) (2007) 2423-2431. DOI: 10.1016/j.jeurceramsoc.2006.09.011
3. J. A. Araujo, V. Schalch, J Mater Res Technol., 3 (3) (2014) 274-279. DOI: 10.1016/j.jmrt.2014.06.003
4. M. X. Zhang, J. L. Li, Q. Zeng and Q. Q. Mou, Appl Sci., 9 (2019) 3604-3614.
5. F. Zhang, C. Wei, Z. G. Deng, X. B. Li, C. X. Li, M. T. Li, Hydrometall., 161 (2016) 102-106. DOI: 10.1016/j.hydromet.2016.01.029
6. G. Rosler, C. Pichler, J. Antrekowitsch, S. Wegscheider, J Min Met Mater Soc., 66 (2014) 1721-1729. DOI: 10.1007/s11837-014-1131-8
7. G. S. Lee and Y. J. Song, Miner Eng., 20 (8) (2007) 739-746. DOI: 10.1016/j.mineng.2007.03.001
8. S. Polsilapa and P. Wangyao, J. Met. Mater. Miner., 17 (1) (2007) 67-73.
9. C. M. F. Vieira, R. Sanchez, S. N. Monteiro, N. Lalla, N. Quaranta, J. Mater. Res. Technol., 2 (2) (2013) 88-92. DOI: 10.1016/j.jmrt.2012.09.001
10. A. H. Bui, T. L. Vu, V. T. Nguyen, Mater. Sci. Forum, 804 (2014) 127-130. DOI: 10.4028/
11. P. Palimaka, S. Pietrzyk, M. Stepien, K. Ciecko and I. Nejman, Metal, 8 (2018) 547-559. DOI:10.3390/met8070547
12. M. H. Morcali, O. Yucel, A. Aydin, B. Derin, J. Min. Metall. Sect. B-Metall., 48 (2) (2012) 173-184. DOI:10.2298/JMMB111219031M
13. R. Chairaksa-Fujimoto, Y. Inoue, N. Umeda, S. Itoh, T. Nagasaka, Int J Miner Metall Mater., 22 (2015) 788-797. DOI: 10.1007/s12613-015-1135-6
14. Z. Andic, M. Korac, Z. Kamberovic, Metall. Mater. Eng., 22 (4) (2016) 303-311. DOI: 10.30544/244
15. K. Gargul, P. Handzlik, P. Palimaka, A. Pawlik, J. Min. Metall. Sect. B-Metall., 57 (2) (2021) 163-173. DOI:10.2298/JMMB200630012G
16. A. G. Guezennec, J. C. Huber, F. Patisson, P. Sessiecq, J. P. Birat, D. Ablitzer, Powder Technol., 157 (1-3) (2005) 2-11. DOI: 10.1016/j.powtec.2005.05.006
17. S. L. Wu, F. Chang, J. L. Zhang, H. Lu and M. Y. Kou, ISIJ Int., 57 (8) (2017) 1364-1373. DOI: 10.2355/isijinternational.ISIJINT-2017-013
18. N. Kanari, D. Mishra, I. Gaballah, and B. Dupre, Thermochim. Acta, 410 (1-2) (2004) 93-100. DOI: 10.1016/S0040-6031(03)00396-4
How to Cite
Bui, A.-H., Le, D.-C., & Nguyen, T.-T. (2022). Synthesis of ZnO nanoparticles from electric arc furnace dust. Journal of Mining and Metallurgy, Section B: Metallurgy, 58(2), 253-260. Retrieved from
Original Scientific Paper