Structure and Properties of Nanosize NiFe2O4 Prepared by Template and Precipitation Methods

  • Aleksandar Cosovic Institute for Technology of Nuclear and Other Mineral Raw Materials, Belgrade
  • Vladan Cosovic University of Belgrade, Institute of Chemistry, Technology and Metallurgy
  • Tomas Zak CEITEC IPM, Institute of Physics of Materials AS CR, Brno
  • Bohumil David CEITEC IPM, Institute of Physics of Materials AS CR, Brno
  • Nadezda Talijan University of Belgrade, Institute of Chemistry, Technology and Metallurgy
Keywords: phase composition, microstructures, Precipitation, nanocrystalline materials, magnetic properties,

Abstract


Nanosize NiFe2O4 was prepared by template method and precipitation process using same starting materials. The use of soluble starch in both synthesis routes was investigated. The amount of the used precipitating agent (Na2CO3) for the precipitation approach was selected according to two adopted scenarios based on theoretical and average yield of possible side reaction expressed by the degree of substitution (DS). The results of SEM microstructural analysis of the prepared Ni-ferrite powders demonstrate evident influence of the applied preparation method whereas high-magnification FE-SEM images show very similar fine-grained structures characterized by different size of particles. According to the results of XRD analysis, the obtained ferrite powders exhibit only slight differences in phase composition with calculated crystallite size for template sample dXRD = 36 nm and for the both precipitation route samples dXRD = 21 nm. Additional sample characterization using 57Fe Mössbauer spectroscopy supports the findings of the microstructural and XRD analysis. The “clearest” spectrum was obtained for the template sample while the strongest influence of nanocrystalline component was observed for the sample prepared with maximal amount of precipitation agent (DS=3). The room temperature magnetic hysteresis loops, recorded using vibrating sample magnetometer (VSM), are very similar and exhibit characteristic shape with values of magnetic properties within expected range for this type of material.

Author Biography

Vladan Cosovic, University of Belgrade, Institute of Chemistry, Technology and Metallurgy
Department of Materials and Metallurgy

References

F. Fresno, T. Yoshida, N. Gokon, R. Fernandez-Saavedra, T. Kodama, Int. J. Hydrogen Energ., 35 (2010) 8503-8510.

K.-S. Lin, A.K. Adhikari, Z.-Y. Tsai, Y.-P. Chen, T.-T. Chien, H.-B. Tsai, Catalysis Today 174 (2011) 88-96.

S.L. Darshane, S.S. Suryavanshi, I.S. Mulla, Ceramics International, 35(5) (2009) 1793-1797.

D.T.T. Nguyet, N.P. Duong, L.T. Hung, T.D. Hien, T. Satoh, J. Alloys Compd., 509(23) (2011) 6621-6625.

T.F. Marinca, I. Chicinaş, O. Isnard, V. Pop, F. Popa, J. Alloys Compd., 509(30) (2011) 7931-7936.

D. Guillard, A.E. Lewis, Ind. Eng. Chem. Res., 40 (2001) 5564-5569.

J.W. Patterson, H.E. Allen, J.J. Scala, Water Pollution Control Federation, 49(12) (1977) 2397-2410.

Z. Dong-fang, JU Ben-zhi, Z. Shu-fen, Y. Jin-zong, Proc. 3rd International Conference on Functional Molecules ICFM, 8-11 September, Dalian, China, 2005, p. 25-30.

X’Pert High Score Plus 2.0a, PANalytical BV, Lelyweg 1, Almelo, the Netherlands. ICSD Database release 2010/2, FIZ Karlsruhe, Germany.

T. Žák, Y. Jirásková, Surf. Interface Anal., 38 (2006) 710-714.

A. Mohamed, B. Jamilah, K.A. Abbas, R.A. Rahman, K. Roselina, Am. J. Agr. Bio. Sci., 3(4) (2008) 639-646.

V. Šepelák, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F.J. Litterst, K.D. Becker, J. Magn. Magn. Mater., 257(2-3) (2003) 377-386.

J. Jacob, M.A. Khadar, J. Appl. Phys. 107 (2010) 114310-1–114310-10.

H. Yang, L. Zhao, X. Yang, L. Shen, L. Yu, W. Sun, Y. Yan, W. Wang, S. Feng, J. Magn. Magn. Mater. 271(2-3) (2004) 230-236.

T. Komatsu, N. Soga, J. Appl. Phys. 51(1) (1980) 601-606.

D. Lin, A.C. Nunes, C.F. Majkrzak, A.E. Berkowitz, J. Magn.Magn. Mater., 145(2) (1995) 343-348.

R.H. Kodama, A.E. Berkowitz, E.J. McNiff, Jr., S. Foner, Phys. Rev.Lett., 77 (1996) 394-397.

K. Haneda, Can. J. Phys. 65 (1987) 1233-1244.

J.-M. Grenèche, M. Miglierini, in Mössbauer Spectroscopy in Materials Science, Eds. (M. Miglierini, D. Petridis), Kluwer, Dordrecht, 1999.

A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Mater Chem Phys, 112(2) (2008) 572-576.

A.B. Nawale, N.S. Kanhe, K.R. Patil, S.V. Bhoraskar, V.L. Mathe, A.K. Das, J Alloys Compd., 509(12) (2011) 4404-4413.

L. Yang, Y. Xie, H. Zhao, X. Wu, Y. Wang, Solid-State Electronics, 49 (2005) 1029-1033.

G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Sensors, 10 (2010) 5469-5502.

L. Ma, L. Chen, S. Chen, Mater. Chem. Phys., 114 (2009) 692-696.

Published
2014/02/10
How to Cite
Cosovic, A., Cosovic, V., Zak, T., David, B., & Talijan, N. (2013). Structure and Properties of Nanosize NiFe2O4 Prepared by Template and Precipitation Methods. Journal of Mining and Metallurgy, Section B: Metallurgy, 49(3), 271. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/3567
Section
Original Scientific Paper