Matte-slag separation behavior during reduction process of iron phase

  • yuxuan liu
  • yonggang Wei
  • Shiwei Zhou Kunming University of Science and Technology
  • bo li
  • hua wang

Abstract


The Isa smelting furnace discharges the matte and slag in the same tapping hole. As a result, an electric furnace needs to clean the slag. In the present study, the copper slag cleaning in an electric furnace, particularly the separation of the matte from the slag during the reduction process, was investigated. For Fe3O4 to FeO, the foaming slag in the melt disappeared and the matte particles settled discernibly. With the formation of the metallic iron, the viscosity of slag increased and the foaming slag formed again, hindering the sedimentation of the matte. The microstructure of the slag and the existence of the metallic iron found in the slag were analyzed in detail. The results obtained in this paper provide a theoretical basis for the reasonable control of the transformation of Fe3O4 during the copper slag cleaning in an electric furnace.

Keywords: Cleaning; magnetite; reduction; foaming slag.

References

[1] Kn A, Id B, Kn A, Km C, Wt A, Mt D, Ym E. Global distribution of material consumption: Nickel, copper, and iron - ScienceDirect. Resources, Conservation Recycling, 133 (2018) 369-374. DOI: https://doi.org/10.1016/j.resconrec.2017.08.029

[2] Tian H, Guo Z, Pan J, Zhu D, Wang D. Comprehensive review on metallurgical recycling and cleaning of copper slag. Resources Conservation Recycling, 168 (2021) 105366. DOI: 10.1016/j.resconrec.2020.105366

[3] Guo X, Tian M, Wang S, Yan S, Li Z. Element Distribution in Oxygen-Enriched Bottom-Blown Smelting of High-Arsenic Copper Dross. JOM: the journal of the Minerals, Metals Materials Society 71 (6) (2019). DOI: 10.1007/s11837-019-03767-3

[4] Yu H, Sun P. Oxygen Enriched Bottom Blowing Bath Smelting Temperature Control Method Based on Variable Universe Fuzzy-PID. In: International Conference on Intelligent Networks & Intelligent Systems, (2014). DOI: 10.1109/ICINIS.2013.39

[5] Wang J, Mingyan GU, Liu G, Chu H, Faliang WU, Fang Y, Yanwu TU, Wenke LI, Lan S. A thermodynamic regression analysis of oxygen bottom-blown copper smelting furnace based on uniform design method. Chemical Industry Engineering Progress, (2016). DOI: 10.16085/j.issn.1000-6613.2016.05.006

[6] Liu L, Yan HJ, Zhou JM, Gao Q, Cui ZX. Mechanism of copper smelting process by oxygen bottom blowing and microanalysis of smelting products. Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 22 (7) (2012) 2116-2124. DOI: 10.1007/s11783-011-0280-z

[7] Ye, Chen. Implementation of integrated automatic control system of copper smelter based on bath smelting technique. International Journal of Manufacturing Technology Management, 25 (4) (2012) 224-236. DOI: 10.1504/IJMTM.2012.048706

[8] Zhao HL, Yin P, Zhang LF, Wang S. Water model experiments of multiphase mixing in the top-blown smelting process of copper concentrate. International Journal of Minerals, Metallurgy Materials, 23 (12) (2016) 1369. DOI: 10.1007/s12613-016-1360-7

[9] Mackey PJ. Evolution of the Large Copper Smelter — 1800s to 2013. John Wiley & Sons, Inc, (2016). DOI: 10.1002/9781118889657.ch2

[10] Gao X, Chen Z, Shi J, Taskinen P, Jokilaakso A. Effect of Cooling Rate and Slag Modification on the Copper Matte in Smelting Slag. Mining Metallurgy Exploration, (2) (2020). DOI: 10.1007/s42461-020-00274-x

[11] Wan X, Shen L, Jokilaakso A, Eri H, Taskinen P. Experimental Approach to Matte–Slag Reactions in the Flash Smelting Process. Mineral Processing Extractive Metallurgy Review, (2020). DOI: 10.1080/08827508.2020.1737801

[12] Jylh JP, Khan NA, Jokilaakso A. Computational Approaches for Studying Slag–Matte Interactions in the Flash Smelting Furnace (FSF) Settler. Processes, 8 (4) (2020) 485. DOI: 10.3390/pr8040485

[13] Wang QM, Guo XY, Tian QH. Copper smelting mechanism in oxygen bottom-blown furnace. Transactions of Nonferrous Metals Society of China, 27 (4) (2017) 946-953. DOI: 10.1016/S1003-6326(17)60110-9

[14] Biswas AK, Davenport WG. Extractive Metallurgy of Copper. Pergamon, (2011). DOI: 10.1016/C2010-0-64841-3

[15] Chen Y, Zhao Z, Taskinen P, Liang Y, Liu H. Characterization of Copper Smelting Flue Dusts from a Bottom-Blowing Bath Smelting Furnace and a Flash Smelting Furnace. Metallurgical Materials Transactions B, (2020). DOI: 10.1007/s11663-020-01907-8

[16] X Li, Y Liu, D Wang,T Zhang. Emulsification and Flow Characteristics in Copper Oxygen-Rich Side-Blown Bath Smelting Process. Metals - Open Access Metallurgy Journal 10 (11) (2020) 1520. DOI: 10.3390/met10111520

[17] Wang B, Wang Z, Jia Y, Yu H. Dynamic model of bottom blown oxygen copper smelting process. International Journal of Modelling, Identification Control, 30 (2) (2018) 118-131. DOI: 10.1504/IJMIC.2018.10014981

[18] Zhang Q, Chen J, Wu Y, Liu H, Yang H. Suppressing SO3 formation in copper smelting flue gas by ejecting pyrite into flue. Environmental Science Pollution Research, (2) (2020). DOI: 10.1007/s11356-020-10796-y

[19] Wang QM, Wang SS, Tian M, Tang DX, Tian QH, Guo XY. Relationship between copper content of slag and matte in the SKS copper smelting process. International Journal of Minerals Metallurgy and Materials, 26 (3) (2019) 8. DOI: 10.1007/s12613-019-1738-4

[20] Chen P, Xiao H, Chen J, Chen L, Zhang D, Liu W, Yang T. Oxygen-Rich Side-Blown Bath Smelting of Copper Dross: A Process Study. Journal of Sustainable Metallurgy, 6 (2) (2020) 344-354. DOI: 10.1007/s40831-020-00278-3

[21] Zhou S, Wei Y, Li B, Wang H. Effect of Iron Phase Evolution on Copper Separation from Slag Via Coal-Based Reduction. Metallurgical Materials Transactions B, 49 (2018) 3086-3096. DOI: 10.1007/s11663-018-1379-4

[22] Zheng H, Bo LI, Zhou H, Wei Y, Wang H. Dilution of copper slag under reduction of rubber seed oil. The Chinese Journal of Process Engineering, (2019). DOI: 10.12034/j.issn.1009-606X.218284

[23] Happel, J., and H. Brenner. Low Reynolds Number Hydrodynamics. Distributed by Kluwer Boston, (1981). DOI: 10.1007/978-94-009-8352-6

[24] Sineva S,Shevchenko M, Shishin D. Phase equilibria and minor element distributions in complex copper/slag/matte systems. JOM, 72 (10) (2020) 3401-3409. DOI: 10.1007/s11837-020-04326-x

[25] Sineva S , Hayes P C , Jak E. Experimental Study of the Slag/Matte/Metal (Fe or Cu)/Tridymite Equilibria in the Cu-Fe-O-S-Si-(Ca) System at 1473 K (1200 °C): Effect of Ca. Metallurgical and Materials Transactions B, (2) (2021). DOI: 10.1007/s11663-021-02188-5

 

Published
2023/08/15
How to Cite
liu, yuxuan, Wei, yonggang, Zhou, S., li, bo, & wang, hua. (2023). Matte-slag separation behavior during reduction process of iron phase. Journal of Mining and Metallurgy, Section B: Metallurgy, 59(1), 27-37. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/37151
Section
Original Scientific Paper