Synthesis of high purity magnesia MgO from Algerian dolomite ore

  • Bouchekrit Chafia Ferhat Abbas Setif 1 University, Emergent Materials Research Unit, Setif, Algeria
  • KOLLI Mostafa Emergent Materials Research Unit, Ferhat Abbas Setif 1 University, Setif, Algeria
  • Altiner Mahmut Çukurova University, Mining Engineering Department, Adana, Turkey
  • Doufnoune Rachida Ferhat Abbas Setif 1 University, Emergent Materials Research Unit, Setif, Algeria
Keywords: Dolomite, Acid leaching, Precipitation, Mg(OH)2, MgO, Calcination

Abstract


A nanometric Mg(OH)2 and MgO particles with high purity were successfully synthesized from Algerian dolomite via a leaching-precipitation-calcination process. The effect of leaching parameters such as H2SO4 acid concentration (C), temperature (T), time (t), solid/liquid ratio (S/L), and precipitation parameters: type of precipitating base (KOH, NaOH, NH4OH), OH-/Mg2+ ratio, and temperature on the obtained product properties were investigated using Taguchi approach. The optimal leaching conditions were selected as: C=5M, T=65 °C, t=15 min, and S/L ratio=1:5. Whereas, the potassium hydroxide (KOH) was selected as the optimal precipitating base with OH-/Mg2+ = 10.5. The calcination of the precipitates at 800 °C during 2 h made it possible to produce a high purity MgO (~99.45 %) with a crystallite size of approximately 16.5 nm and particles in the form of agglomerated porous plates with a high SAA (70.42 m2/g) which may be of interest for some applications such as catalysts or supports.

References

[1]       J. H. Canterford, Magnesia-An important industrial mineral: A review of processing options and uses, Mineral Processing and Extractive Metallurgy Review, 2 (1-2) (1985) 57−104. https://doi.org/10.1080/08827508508952601


[2]       Y. Yin, G. Zhang, Y. Xia, Synthesis and characterization of MgO nanowires through a vapor‐phase precursor method, Advanced Functional Materials, 12 (4) (2002) 293-298. https://doi.org/10.1002/1616-3028(20020418)12:4<293::AID-ADFM293> 3.0.CO;2-U


 [3]      C. Sadik, O. Moudden, A. El Bouari, I.-E. El Amrani, Review on the elaboration and characterization of ceramics refractories based on magnesite and dolomite, Journal of Asian Ceramic Societies, 4 (3) (2016) 219−233. http://dx.doi.org/10.1016/j.jascer.2 016.06.006


[4]       Y. Cui, D. Qu, X. Luo, X. Liu, Y. Guo, Effect of La2O3 addition on the microstructural evolution and thermomechanical property of sintered low-grade magnesite, Ceramics International, 47 (3) (2021) 3136−3141. https://doi.org/10.1016/j.ce ramint.2020. 09.150


[5]       S. Lei, Y. Gan, Z. Cao, S. Wang, H. Zhong, The preparation of high purity MgO and precision separation mechanism of Mg and Ca from dolomite, Mining & Metallurgy Exploration, 37 (2020) 1221−1230. https://doi.org/10.1007/s42461-020-00213-w


[6]       D. Feng, X. Luo, G. Zhang, Z. Xie, P. Han, Effect of Al2O3+ 4SiO2 additives on sintering behavior and thermal shock resistance of MgO-based ceramics, Refractories and Industrial Ceramics, 57 (2016) 417−422. http://dx.doi.org/10.1007/s11148-016-9996-4


[7]       S. S. Mirtalebi, H. Almasi, M. A. Khaledabad, Physical, morphological, antimicrobial and release properties of novel MgO-bacterial cellulose nanohybrids prepared by in-situ and ex-situ methods, International Journal of  Biological Macromolecules, 128 (2019) 848−857. https://doi.org/10.1016/j.ijbiomac.2019.02.007


[8]       M. Altiner, M. Yildirim, Preparation of periclase (MgO) nanoparticles from dolomite by pyrohydrolysis–calcination processes, Asia-Pacific Journal of Chemical Engineering,  12 (6) (2017) 842−857. https://doi.org/10.1002/apj.2123


[9]       T. Ishikawa, K. Tsujikura, M. Tanaka, N. Nishida, A. Mitani, Morphological changes and their thermal conductivities of MgO crystals containing various impurities (B, Ca, Si), International Journal of Applied Ceramic Technology, 17 (6) (2020) 2734−2743. https://doi.org/10.1111/ijac.13616


[10]     A. Ranaivosoloarimanana, T. Quiniou, M. Meyer, F. Rocca, Analyse de la décomposition thermique de l’hydroxyde de magnesium, 11ème Inter-Congrès des Sciences du Pacifique et 2èmes Assises de la Recherche française dans le Pacifique. Les Pays du Pacifique et leur environnement océanique face aux changements locaux et globaux, https://hal.archives-ouvertes.fr/hal-03379435.


[11]     S. Ruan, C. Unluer, Influence of mix design on the carbonation, mechanical properties and microstructure of reactive MgO cement-based concrete, Cement and Concrete Composites, 80 (2017) 104−114. https://doi.org/10.1016/j.cemconcomp.201 7.03.004


[12]     H. Dong, C. Unluer, E.-H. Yang, A. Al-Tabbaa, Synthesis of reactive MgO from reject brine via the addition of NH4OH, Hydrometallurgy, 169 (2017) 165−172. http://dx.doi.org/10.1016/j.hydromet.2017.01.010


[13]     A. M. Amer, A contribution to hydrometallurgical processing of low-grade Egyptian dolomite deposits, Hydrometallurgy, 42 (3) (1996) 345−356. https://doi.org/10.1016/0304-386X(95)00088-X


[14]     C. Xiong, W. Wang, F. Tan, F. Luo, J. Chen, X. Qiao, Investigation on the efficiency and mechanism of Cd (II) and Pb (II) removal from aqueous solutions using MgO nanoparticles, Journal of Hazardous Materials, 299 (2015) 664−674. http://dx.doi.org/10.1016/ j.jhazmat.2015.08.008


[15]     F. Al-Hazmi, F. Alnowaiser, A.A. Al-Ghamdi, A. A. Al-Ghamdi, M.M. Aly, R. M. Al-Tuwirqi, F. El-Tantawy, A new large–scale synthesis of magnesium oxide nanowires: structural and antibacterial properties, Superlattices and Microstruct, 52 (2) (2012) 200−209. http://dx.doi.org/10.1016/j.spmi.2012.04.013


[16]     S. Sholicha, W. Setyarsih, G. Sabrina, L. Rohmawati, Preparation of CaCO3/MgO from Bangkalan’s dolomite for raw biomaterial, IOP Conference Series: Journal of Physics: Conference Series, 1171 (2019), 012034: IOP Publishing. https://doi.org/10.1088/1742-6596/1171/1/012034


[17]     I.F. Mironyuk, V.M. Gun’ko, M.O. Povazhnyak, V.I. Zarko, V.M. Chelyadin, R. Leboda, J. Skubiszewska-Zieba, W. Janusz, Magnesia formed on calcination of Mg(OH)2 prepared from natural bischofite, Applied Surface Science, 252 (12) (2006) 4071−4082. https://doi.org/10.1016/j.apsusc.2005.06.020


[18]     K. Abdelaoui, D. Bedghiou, A. Boumaza, Comparative study of thermal and compositional properties of Aïn M'lila dolomite, CaCO3, and MgCO3 using TG and FTIR analyses, Journal of Advanced Research in science and Technology, 7 (2020) 42−53.


[19]     R. Carson, J. Simandl, Kinetics of magnesium hydroxide precipitation from seawater using slaked dolomite, Minerals Engineering, 7 (4) (1994) 511−517. https://doi.org/10.1016/0892-6875(94)90164-3


[20]     B. Petric, N. Petric, Investigations of the rate of sedimentation of magnesium hydroxide obtained from seawater, Industrial Engineering Chemistry Process Design and Development, 19 (3) (1980) 329−335. https://doi.org/10.1021/i260075a001


[21]     A. S. Bhatti, D. Dollimore, A. Dyer, Magnesia from seawater: a review, Clay Minerals, 19 (1984) 865−875. https://doi.org/10.1180/claymin.1984.019.5.14


[22]     A. Bhargava, J. A. Alarco, I. D. R. Mackinnon, D. Page, A. Ilyushechkin, Synthesis and characterisation of nanoscale magnesium oxide powders and their application in thick films of Bi2Sr2CaCu2O8, Materials Letters, 34 (3-6) (1998) 133−142. https://doi.org/10.1016/S0167-577X(97)00148-1


[23]     V. S. S. Birchal, S. D. F. Rocha, V. S. T. Ciminelli, The effect of magnesite calcination conditions on magnesia hydration, Minerals Engineering, 13 (14-15) (2000) 1629−1633. https://doi.org/10.1016/S0892-6875(00)00146-1


[24]     Magnesite reserves worldwide as of 2020, by major countries, https://www.statista.com/statistics/264953/global-reserves-of-magnesium-by-major-countries/, 2021 (accessed April 2021).


[25]     J. Yu, J. Qian, F. Wang, Z. Li, X. Jia, Preparation and properties of a magnesium phosphate cement with dolomite, Cement and Concrete Research, 138 (2020) 106235 1−17.


https://doi.org/10.1016/j.cemconres.2020.106235


[26]     M. Altiner, M. Yildirim, T. Yilmaz, Leaching of Mersin/aydincik dolomite ore in hydrochloric acid. Dissolution rates, Physicochemical  Problems of Mineral Processing, 52 (2) (2016) 536−550. http://dx.doi.org/10.5277/ppmp160202


[27]     M. Altiner, Effect of Base Types on the Properties of MgO Particles Obtained from Dolomite Ore, Mining, Metallurgy & Exploration, 36 (2019) 1013−1020. https://do i.org/10.1007/s42461-019-00122-7


[28]     M. Yildirim, H. Akarsu, Preparation of magnesium oxide (MgO) from dolomite by leach-precipitation-pyrohydrolysis process, Physicochemical Problems of Mineral Processing, 44 (2010) 257−272.


[29]     E-S. A. Abdel-Aal, Possibility of utilizing Egyptian dolomite ores for production of magnesium oxide by acid leaching, Fizykochemiczne Problemy Mineralurgii, 29 (1995) 55−65.


[30] M. F. R. Fouda, M. M. Abd-Elzaher, R. S. Amin, Exploitation of Egyptian dolomite and magnesite ores for the preparation of magnesium compounds II. Kinetics of the reaction with nitric and sulphuric acids, South African Tydskr Chemistry, 52 (2/3) (1999) 90−94.


[31]     A. A. Baba, A. O. Omipidan, F. A. Adekola, O. Job, A. G. F. Alabi, A. Baral, R. Samal, Optimization study of a Nigerian dolomite ore dissolution by hydrochloric acid, Journal of Chemical Technology and Metallurgy, 49 (3) (2014) 280−287.


[32]     V. V. Quyen, V. T. T. Trang, N. D. Nam, T. D. Huy, D. N. Binh, Research On The Manufacturing Magnesium From Thanhhoa Dolomite By Pidgeon Process, Chemical Engineering, «EUREKA: Physics and Engineering», 6  (2020) 97−107. https://doi.org/10.21303/2461-4262.2020.001383


[33]     M. Rashad, H. M. Baioumy, Chemical processing of dolomite associated with the phosphorites for production of magnesium sulfate heptahydrate, The European Journal of Mineral Processing and Environmental Protection,  5 (2) (2005) 174−183.


[34]     R. McIntosh, J. Sharp, F. W. Wilburn, The thermal decomposition of dolomite, Thermochimica Acta, 165 (2) (1990) 281−296. http://dx.doi.org/10.2138/am.201 1.3813


[35]     M. Samtani, D. Dollimore, F. W. Wilburn, K. Alexander, Isolation and identification of the intermediate and final products in the thermal decomposition of dolomite in an atmosphere of carbon dioxide, Thermochimica Acta, 367-368 (2001) 285−295. https://doi.org/10.1016/S0040-6031(00)00662-6


[36]     Q. Yuan, Z. Lu, P. Zhang, X. Luo, X. Ren, T. D. Golden, Study of the synthesis and crystallization kinetics of magnesium hydroxide, Materials Chemistry and Physics, 162 (2015) 734−742. http://dx.doi.org/10.1016/j.matchemphys.2015.06.048


[37]     A. A. Pilarska, Ł. Klapiszewski, T. Jesionowski, Recent development in the synthesis, modification and application of Mg(OH)2 and MgO: A review, Powder Technology, 319 (2017) 373−407. http://dx.doi.org/10.1016/j.powtec.2017.07.009


[38]     G. Li, Z. Li, H. Ma, X. Jiang, W. Yao, Preparation of magnesia nanoballs from dolomite, Integrrated Ferroelectrics, 145 (2013) 170−177. https://doi.org/10.1080/10584 587.2013.789301


[39]     E. Alvarado, L. Torres-Martinez, A. Fuentes, P. Quintana, Preparation and characterization of MgO powders obtained from different magnesium salts and the mineral dolomite, Polyhedron,  19 (22-23) (2000) 2345−2351. https://doi.org/10.1016 /S0277-5387(00)00570-2


[40]     M.M.M.G.P.G. Mantilaka, H.M.T.G.A. Pitawala, D.G.G.P. Karunaratne, R.M.G. Rajapakse, Nanocrystalline magnesium oxide from dolomite via poly (acrylate) stabilized magnesium hydroxide colloids, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443 (2014) 201−208. http://dx.doi.org/10.1016/j.colsurfa.2013.1 1.020


[41]     Y. Xiong, B. Wu, J. Zhu, X. Fan, P. Cai, J. Wen, X. Liu, Preparation of magnesium hydroxide from leachate of dolomitic phosphate ore with dilute waste acid from titanium dioxide production, Hydrometallurgy,  142 (2014)137−144.


http://dx.D oi.org/10.1016/j.hydromet.2013.11.013


[42]     Q. Sun, B. Chen, X. Wu, M. Wang, C. Zhang, X-F. Zeng, J-X. Wang, J-F. Chen, Preparation of transparent suspension of lamellar magnesium hydroxide nanocrystals using a high-gravity reactive precipitation combined with surface modification, Industrial & Engineering Chemistry Research,  54 (2) (2015) 666−671. https://doi.org/10.1021/ie5 04 265z


[43]     F. Meshkani, M. J. P. T. Rezaei, Facile synthesis of nanocrystalline magnesium oxide with high surface area, Powder Technology. 196 (1) (2009) 85−88.


https://doi.org/10.1016/j.powtec.2009.07.010


[44]     S. Yousefi, B. Ghasemi, M. Tajally, A. Asghari, Optical properties of MgO and Mg(OH)2 nanostructures synthesized by a chemical precipitation method using impure brine, Journal of Alloys and Compounds, 711 (2017) 521−529. http://dx.doi.org/10.1016/ j.jallcom.2017.04.036


[45]     G. Balakrishnan, R. Velavan, K. M. Batoo, E. H. Raslan, Microstructure, optical and photocatalytic properties of MgO nanoparticles, Results in Physics, (2020) 16 103013 1-4. https://doi.org/10.1016/j.rinp.2020.103013


[46]     M. Kuang, Y. Shang, G. Yang, B. Liu, B. Yang, Facile synthesis of hollow mesoporous MgO spheres via spray-drying with improved adsorption capacity for Pb (II) and Cd (II), Environmental Science and Pollution Research, 26 (2019) 18825−18833. https://doi.org/10.1007/s11356-019-05277-w


[47] Y. Zhang, M. Ma, X. Zhang, B. Wanga, R. Liu, Synthesis, characterization, and catalytic property of nanosized MgO flakes with different shapes, Journal of Alloys and Compounds, 590 (2014) 373–379. https://doi.org/10.1016/j.jallcom.2013.12.113


[48] N. Sutradhar, A. Sinhamahapatra, S.K. Pahari, P. Pal, H.C. Bajaj, I. Mukhopadhyay, A.B. Panda, Controlled synthesis of different morphologies of MgO and their use as solid base catalysts, Journal of Physical Chemistry C, 115 (25) (2011) 12308–12316. https://doi.org/10.1021/jp2022314


[49]  M. Chinthala, A. Balakrishnan, P. Venkataraman, V. M. Gowtham, R. K. Polagani, Synthesis and applications of nano‑MgO and composites for medicine, energy, and environmental remediation: a review, Environmental Chemistry Letters, 19 (2021) 4415–4454. https://doi.org/10.1007/s10311-021-01299-4


[50] F. Jin, A. Al-Tabbaa, Characterisation of different commercial reactive magnesia, Journal of Advances in Cement Research, 26 (2) (2014) 101–113. https://doi.org/10.1680/adcr.13.00004


[51]     A. Kumar, J. Kumar, On the synthesis and optical absorption studies of nano-size magnesium oxide powder, Journal of Physics and Chemistry of Solids, 69 (11) (2008) 2764−2772. https://doi.org/10.1016/j.jpcs.2008.06.143


[52]     A. Kumar, S. Thota, S. Varma, J. Kumar, Sol-gel synthesis of highly luminescent magnesium oxide nanocrystallites, Journal of Luminescence, 131 (4) (2011) 640−648. https://doi.org/10.1016/j.jlumin.2010.11.008


 


 


 


 


 

Published
2023/08/15
How to Cite
Chafia, B., Mostafa, K., Mahmut, A., & Rachida, D. (2023). Synthesis of high purity magnesia MgO from Algerian dolomite ore. Journal of Mining and Metallurgy, Section B: Metallurgy, 59(1), 53-64. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/37304
Section
Original Scientific Paper