The The effect of precious metals in the NiAl coating on the oxidation resistance of the Inconel 713 superalloy

  • Maryana Zagula-Yavorska Rzeszow University of Technology, Department of Materials Science
  • Jolanta Romanowska Rzeszow University of Technology
Keywords: superalloy; platinum; rhodium; oxidation; aluminides

Abstract


The rhodium incorporated aluminide coating was produced by the rhodium electroplating   (0.5 µm thick layer) followed by the chemical vapor deposition process on the Inconel 713 superalloy. This coating is composed of the β-NiAl phase. A part of nickel atoms is replaced by rhodium atoms in the β-NiAl phase. The plain, rhodium and platinum incorporated aluminide coatings were oxidized at 1100 ºC under the atmospheric pressure. The oxidation kinetics of the rhodium and platinum incorporated aluminide coatings are similar, but different than oxidation kinetic of the plain coating. The α-Al2O3 is the main product both in rhodium and platinum modified coatings after 360 h of oxidation. Moreover,  the γ-Ni3Al phase, besides the β-NiAl phase, was identified. The presence of 4 at. % rhodium in the coating provides similar oxidation resistance as the presence of 10-20 at. % platinum. Both rhodium and platinum incorporated aluminide coatings produced by the chemical vapor deposition process offer good oxidation protection of the Inconel 713 superalloy.

References


  1. R . Sitek, P. Kwaśniak, M. Sopicka-Lizer, J. Borysiuk, J. Kamiński, J. Mizera, K. Kurzydłowski, Experimental and ab-initio study of the Zr- and Cr-enriched aluminide layer produced on an IN 713C Inconel substrate by CVD; investigations of the layer morphology, structural stability, mechanical properties and corrosion resistance, Intermetallics, 74 (2016) 15-24. https://doi.org/10.1016/j.intermet.2016.04.003

  2. W. Li, J. Sun, S. B. Liu, Y. Liu, L. Fu, T. G. Wang, S. M. Jiang, J. Gong, C. Sun Preparation and cyclic oxidation behaviour of Re doped aluminide coatings on a Ni-based single crystal superalloy, Corrosion Science, 164 (2020) 108354. https://doi.org/10.1016/j.corsci.2019.108354

  3. T. Kepa, G. Bonnet, F. Pedraza, Oxidation behaviour of ultrafast slurry aluminized nickel, Surface and Coating Technology, 424 (2021) 127667. https://doi:10.1016/j.surfcoat.2021.127667

  4. K. Mondal, L. Nuñez, C. M. Downey, I. J van Rooyen, Recent advances in the thermal barrier coatings for extreme environments, Material Science for Energy Technologies, 4 (2021) 208-210. https://doi.org/10.1016/j.mset.2021.06.006

  5. M. M. Barjesteh, S. M. Abbasi, K. Zangeneh-Madar, K. Shirvani, Creep rupture properties of bare and coated polycrystalline nickel-based superalloy Rene80, Journal of Mining and Metallurgy, Section B: Metallurgy, 57(3) (2021) 401-412. https://doi:10.2298/JMMB201203036B

  6. M. M. Barjesteh, K. Zangeneh-Madar, S. M. Abbasi, K. Shirvani, The effect of platinum-aluminide coating features on high temperature fatigue life of nickel-based superalloy Rene80, Journal of Mining and Metallurgy, Section B: Metallurgy, 55(2) (2019) 235-251. https://doi:10.2298/JMMB181214029B

  7. S. Nouri, M. Azadeh, Microstructural investigation of the coatings prepared by simultaneous aluminizing and siliconizing process on γ-TiAl, Journal of Mining and Metallurgy, Section B: Metallurgy, 55(2) (2019) 217-225. https://doi:10.2298/JMMB180814021N

  8. C. Y. Jiang, L. Y. Qian, M. Feng, H. Liu, Z. B. Bao, M. H. Chen, S. L. Zhu, F. H. Wang, Benefits of Zr addition to oxidation resistance of a single-phase (Ni,Pt) Al coating at 1373 K, Journal of Materials Science and Technology, 35 (2019) 1334–1344. https://doi.org/10.1787/5jxrjncwxv6j-en

  9. C. Leyensa, B. A. Pint, I. G. Wright, Effect of composition on the oxidation and hot corrosion resistance of NiAl doped with precious metals, Surface and Coating Technology, 2 (2000) 15-22. https://doi.org/10.1016/S0257-8972(00)00878-1

  10. S. G. Lakshmi, K. T. Swarup, D. K. Das, M. Roy, Erosion behaviour of platinum aluminide bond coat on directionally solidified CM247 and AM1 single crystal superalloys, Surface and Coating Technology, 429 (2022) 127941. https://doi:10.1016/j.surfcoat.2021.127941

  11. P. Y. Hou, V. K. Tolpygo, Examination of the platinum effect on the oxidation behavior of nickel-aluminide coatings, Surface and Coating Technology, 202 (2007) 623–627. https://doi.org/10.1016/j.surfcoat.2007.06.013

  12. M. K. Kumawat, R. Sarkar, V. Jayaram, M. Z. Alam, Fatigue behavior of a freestanding Pt-aluminide (PtAl) bond coat at ambient temperature, Surface and Coating Technology, 427 (2021) 127787. https:// doi:10.1016/j.surfcoat.2021.127787

  13. B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prüßner, K. B. Alexander, Substrate and bond coat compositions: factors affecting alumina scale adhesion, Materials Science and Engineering A, 245 (1998) 201–211. https://doi.org/10.1016/S0921-5093(97)00851-4

  14. K. Kim, J. Jun, J. Lee, High temperature corrosion on yttrium modified aluminide coatings on IN 713 C, Journal de physique IV, 3 (1993) 521-529. https://doi: 10.1051/jp4:1993955


15 L. Yang, M. Chen, J. Wang, Y. Qiao, P. Guo, S. Zhu, F. Wang, Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation, Journal of Materials Science and Technology, 45 (2020) 49-58. https://doi:10.1016/j.jmst.2


16 S. Li, M. M. Xu, C. Y. Zhang, Y. S. Niu, Z. B. Bao, S. L. Zhu, F. H. Wang, Co-doping effect of Hf and Y on improving cyclic oxidation behavior of (Ni,Pt)Al coating at                              1150 °C, Corrosion Science,  178 (2021) 109093.  https://doi:10.1016/j.corsci.2020.109093



  1. Z. Liu, X. Zhao, H. Guo, Ch. Zhou, Cyclic oxidation resistance of Ce/Co modified aluminide coatings on nickel base superalloys, Corrosion Science, 94 (2015) 135–141. https://doi.org/10.1016/j.corsci.2015.01.050

  2. Y. Zhang, X. P. Guo, Effect of CeO2 on microstructure and oxidation resistance of silicide coatings prepared on Nb-silicide-based ultrahigh temperature alloy, The Chinese Journal of Nonferrous Metals, 23 (2013) 99–107.


19. W. Y. Chan, P. K. Datta, G. Fisher, J. S. Burnell-Gray, The hot corrosion resistance of platinum–rhodium modified diffusion coating on directionally solidified MAR M002 superalloy at 900°C, High Temperature Surface Engineering, 1-10 (2000). https://doi.org/10.1201/9780367814069


20. ChH. Koo, ChY. Bai, Yi-Jun Luo, The structure and high temperature corrosion behavior of pack aluminized coatings on superalloy IN-738LC, Materials Chemistry and Physics, 86 (2004) 258–268. https://doi.org/10.1016/j.matchemphys.2004.01.004


21. M. Zagula-Yavorska, Oxidation behavior of non-modified and rhodium-or palladium-modified aluminide coatings deposited on CMSX-4 superalloy, Metals, 8 (2018) 613-618. https://doi.org/10.3390/met8080613


22. M. Zagula-Yavorska, M. Wierzbińska, J. Sieniawski, Rhodium and hafnium influence on the microstructure, phase composition and oxidation resistance of aluminide coatings, Metals, 7(12) (2017) 548. https://doi.org/10.3390/met7120548

23. M. Zagula-Yavorska, J. Sieniawski, T. Gancarczyk, Some properties of platinum and palladium modified aluminide coatings deposited by CVD method on nickel-base superalloys, Archives of Metallurgy and Materials, 57 (2012) 503-509. https://doi.org/10.2478/v10172-012-0052-1

24. J. Romanowska, J. Morgiel, M. Zagula-Yavorska, The influence of Pd and Zr co-doping on the microstructure and oxidation resistance of aluminide coatings on the CMSX-4 nickel superalloy, Materials, 14(24) (2021) 7579. https://doi.org/10.3390/ma14247579


  1. C. R. Hubbard, E. H. Evans, D. K. Smith, The reference intensity ratio, I/Ic, for computer simulated powder patterns, Journal of Applied Crystallography, 9 (1976) 169-174. https://doi.org/10.1107/S0021889876010807


26. J. Romanowska, J. Morgiel, M. Zagula-Yavorska, J. Sieniawski, Nanoparticles in hafnium-doped aluminide coatings. Materials Letters, 145 (2015) 162-166. https://doi.org/10.1016/j.matlet.2015.01.089


27. S. Bose, High Temperature Coatings, Burlington, 2007


28. H. Matysiak, M. Zagorska, A. Balkowiec, B. Adamczyk-Cieslak, R. Cygan, J. Cwajna, J. Nawrocki, K. Kurzydłowski, The microstructure degradation of the In 713C nickel-based superalloy after the stress rupture tests, Journal of Materials Engineering and Performance, 23 (2014) 3305-3313. https://doi.org/10.1007/s11665-014-1123-4



  1. ASM International. Handbook Committee. Nickel, Cobalt and Their Alloys; J.R. Davis, Ed., ASM International, Almere, 2000


30. G. W. Goward, D. H. Boone, Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys, Oxidation of Metals, 3 (1971)  475–495. https://doi.org/10.1007/BF00604047

31. P. Zhang, Performance of MCrAlX coatings: oxidation, hot corrosion and interdiffusion, Linköping, 2019

32. C. Jiang, L. Qian, M. Feng, H. Liu, Z. Bao, M. Chen, S. Zhu, F. Wang, Benefits of Zr addition to oxidation resistance of a single-phase (Ni,Pt)Al coating at 1373 K, Journal of Materials Science and Technology, 35 (2019) 1334–1344. https://doi.org/10.1016/j.jmst.2019.03.013



  1. R. Swadźba, M. Hetmańczyk, J. Wiedermann, L. Swadźba,  G. Moskal, B. Witala, K. Radwański,  Microstructure degradation of plain, Pt- and Pt+Pd-modified aluminide coatings on CMSX-4 superalloy under cyclic oxidation conditions,  Surface and Coating Technology, 215 (2013) 16-23. https://doi.org/10.1016/j.surfcoat.2012.06.093

  2. J. Haynes, Y. Zhang, W. Lee, B. Pint, I. Wright, K. Cooley, J. Hampikian, Elevated temperature coatings: science and technology III, TMS, Warrendale, 1999

  3. Q. Fan, H. Yu, T. Wang, Z. Wu, Y. Liu, (2018) Microstructure and oxidation resistance of a Si doped platinum modified aluminide coating deposited on a single crystal superalloy, Coatings, 8 (2018) 1–12. https://doi.org/10.3390/coatings8080264

  4. B. Grushko, D. Kapush, V. Konoval, V. Shemet, A study of the Al-Ni-Pt alloy system. Phase equilibria at 1100 and 1300°C, Powder Metallurgy and Metals Ceramics, 50 (2011) 462-270. https://doi.org/10.1007/s11106-011-9350-9

  5. J. Benoit, K. Badawi, A. Malié, C. Ramade, Microstructure of Pt-modified aluminide coatings on Ni-based superalloys, Surface and Coating Technology, 182(1) (2004) 14-23. https://doi.org/10.1016/S0257-8972(03)00871-5

  6. P. Lamesle, P. Steinmetz,Growth mechanisms and hot corrosion resistance of palladium modified aluminide coatings on superalloys,Materials and Manufacturing Processes, 10 (2009)1053-1075.https://doi.org/10.1080/10426919508935088

  7. B. Przepiórzyński, S. Mi, B. Grushko, M. Surowiec, An investigation of the Al-Ni-Rh phase diagram between 50 and 100 at% Al, Intermetallics, 15 (2007) 918–928. https://doi.org/10.1016/j.intermet.2006.10.051

  8. M. Zagula-Yavorska, J. Sieniawski, Microstructural study on oxidation resistance of nonmodified and platinum modified aluminide coating, Journal of Materials Engineering and Performance, 23 (2014) 918–926. https://doi.org/10.1007/s11665-013-0841-3

  9. M. Zagula-Yavorska, J. Sieniawski, Cyclic oxidation of palladium modified and nonmodified aluminide coatings deposited on nickel base superalloys, Archives of Metallurgy and Materials, 8 (2018) 130–139.  https://doi.org/10.1016/j.acme.2017.05.004

  10. W. Li, L. B. Fu, Y. D. Liu, W. L. Zhang, T. G. Wang, S. M. Jiang, J. Gong, C. Sun, The role of Re in effecting isothermal oxidation behavior of β-(Ni,Pt)Al coating on a Ni-based single crystal superalloy, Corrosion Science, 176 (2020) 108892. https://doi.org/10.1016/j.corsci.2020.108892

  11. Y. Yang, C. Jiang, H. Yao, Z. Bao, S. Zhu, F. Wang, Cyclic oxidation and rumpling behaviour of single phase β-(Ni,Pt)Al coatings with different thickness of initial Pt plating, Corrosion Science, 111 (2016) 162-174. https://doi.org/10.1016/j.corsci.2016.05.011

  12. J. M. Aurrecoechea, L. L. Hsu, K. G. Kubarych, Field experience of platinum aluminide coated turbine blades Materials and Manufacturing Processes, 10 (2009) 1037-1051.https://doi.org/10.1080/10426919508935087

  13. M. S. Li, P. Y. Hou, Improved Cr2O3 adhesion by Ce ion implantation in the presence of interfacial sulfur segregation, Acta Materialia, 55 (2007) 443–453. https://doi.org/10.1016/j.actamat.2006.07.047

Published
2022/11/01
How to Cite
Zagula-Yavorska, M., & Romanowska, J. (2022). The The effect of precious metals in the NiAl coating on the oxidation resistance of the Inconel 713 superalloy . Journal of Mining and Metallurgy, Section B: Metallurgy, 58(2), 299-310. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/37600
Section
Original Scientific Paper