Gibbs free energy of formation of Cu2In2O5 ternary phase determined by E.M.F. method

  • Dominika Jendrzejczyk-Handzlik AGH University of Science and Technology, Faculty of Non-Ferrous Metals , Kraków , Poland
  • Piotr Handzlik
Keywords: E.M.F. method, Gibbs free energy, Formation of Cu2In2O5

Abstract


Employing electrochemical cells with the solid zirconia electrolyte:

Cu2O,CuO /O2- / air

Cu2In2O5, In2O3,Cu2O / O2-/ air

In,In2O3 /O2-/ Ni, NiO

Gibbs free energy of formation of solid Cu2In2O5 phase as well as that for In2O3 and CuO oxides was determined in the temperature range from 973 K to 1372 K. The results obtained in this study were used to derive Gibbs free energy change of the reaction of formation of the ternary compound from respective oxides:

2CuO + In2O3 = Cu2In2O5

which is equal to:  (±1400 J/mol). Oxygen potential diagrams for the Cu–In–O system are also given at two temperatures.

 

References

[1] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Preparation of CuYO2 thin films by sol-gel method using copper acetate and yttrium acetate as metal sources, Nature 389 (1997) 939-942.


http://dx.doi.org/10.1038/40087


[2] H. Yanagi, T. Hase, S. Ibuki, K. Ueda, H. Hosono, Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure, Appl. Phys. Lett. 78 (2001) 1583-1585.


https://doi.org/10.1063/1.1355673.


[3] K. T. Jacob, C. B. Alcock, Thermodynamics of CuAlO2 and CuAl2O4 and Phase Equilibria in the System Cu2O-CuO-Al2O3, J. Amer. Ceram. Soc. 8 (1975) 192-195.


https://doi.org/10.1111/j.1151-2916.1975.tb11441.x


 [4] D. Jendrzejczyk-Handzlik, K. Fitzner, Thermodynamic stability of copper gallates determined from the E.M.F. method, J. Solid State Chem. 232 (2015), 207-212.


https://doi.org/10.1016/j.jssc.2015.09.004


[5] G. Bergerhoff, H. Kasper, Die Kristallstruktur des Kupfer-Indium-Oxids, Cu2In2O5, Acta Crystallogr. B; 24B (1968) 388-391.


https://doi.org/10.1107/S0567740868002414


[6] J-C. Lee, Y-Woo Heo, J-H. Lee, J-J. Kim, Growth of CuInO2 thin film using highly dense Cu2O–In2O3 composite targets, Thin Solid Films; 518 (2009) 1234-1237.


https://doi.org/10.1016/j.tsf.2009.03.225


[7] J.I. Makiura, T. Higo, Y. Kurosawa,  K.  Murakami,  S. Ogo, H. Tsuneki, Y. Hashimoto, Y. Sato .Y.  Sekine, Fast oxygen ion migration in Cu–In–oxide bulk and its utilization for effective CO2 conversion at lower temperature, Chem. Sci. 12 (2021) 2108-2113.


https://doi.org/10.1039/D0SC05340F


[8] G. Skaria, A.K. Saikumar, A. D. Shivprasad , K. B. Sundaram, Annealing studies of copper indium oxide (Cu2In2O5) thin films prepared by RF magnetron sputtering, Coatings, 11 (2021) 1290-1297.


https://doi.org/10.3390/coatings11111290


[9] E. L. Belokoneva, L. I. Leonyuk,  N. I. Leonyuk, Monocrystal synthesis and crystal structures In2CuO4, (Nd, Ce)2CuO4, Sm(Ba, Sm)Cu3-yOz tetragonal copper-deficient rare earth excess phase, Sverkhprovodimost,  Fizika, Khimiya, Tekhnika 4 (1991) 563-569.


[10] W. Gessner , I.A. Chem, D.A.  Wiss, R.G. Fed ,Ternary oxide M IMIIIO2


with MI = silver, copper, thallium and MIII = gallium, indium, thallium. Silikattechnik, 21 (1970) 45-47.


[11] M. Shimode, M. Sasaki, K. Mukaida, Synthesis of the delafossite-type CulnO2, J. Solid State Chem. 151 (2000) 16-20.


https://doi.org/10.1006/jssc.1999.8603


[12] S. Park, D. A. Keszler, Synthesis of 3R-Cu MO 2+ δ ( M=Ga, Sc, In), J. Solid State Chem. 173 (2003) 355-358.


https://doi.org/10.1016/s0022-4596(03)00110-5


[13] M. Sasaki, M. Shimode, Fabrication of bipolar CuInO2 with delafossite structure, J. Phys. Chem. Solids 64 (2003) 1675-1679.


https://doi.org/10.1016/S0022-3697(03)00071-4


[14.] J. Li, A. W. Sleight, C. Y. Jones, B. H. Toby, Trends in negative thermal expansion behavior for AMO2 (A=Cu or Ag; M=Al, Sc, In, or La) compounds with the delafossite structure, J. Solid State Chem. 178 (2005) 285-294.


https://doi.org/10.1016/j.jssc.2004.11.017


[15] L. Liu, K. Bai, H. Gong, P. Wu, First-principles study of Sn and Ca doping in CuInO2, Phys. Rev. B 72 (2005) 125204-1-6.


https://doi.org/10.1103/PhysRevB.72.125204


[16] Y. Yao,  G. Xie, N. Song, X. Yu, R. Li, Thermodynamic Study on CuInO2 Preparation by Solid Reaction Method, Advanced Materials Research, 399-401 (2012) 2241-2244.


https://doi.org/10.4028/www.scientific.net/AMR.399-401.2241


[17] O. J. Gregory, I. M. Tougas, M. Amani, E. E. Crisman, Thermoelectric Properties and Microstructure of Cu-In-O Thin Film, ACS Combinatorials Science; 15 (2013) 580-584.


https://doi.org/10.1021/co4000634


[18] E. Pawlas-Foryst, K. T. Jacob, K. Fitzner, Thermodynamics of GdMnO3 and GdMn2O5 phases determined by the E.M.F. method Arch. Met. 51 (2006) 481-488.


[19] D. Jendrzejczyk-Handzlik, K. Fitzer, Thermodynamic properties of liquid silver-indium alloys determined from e.m.f measurements, Thermochim. Acta 433 (2005) 66-71.


https://doi.org /10.1016/j.tca.2005.02.005


[20] G.G. Charette, S. N. Flengas, Thermodynamic Properties of the Oxides of Fe, Ni, Pb, Cu and Mn by EMF Measurements, J Electrochem Soc 115 (1968) 796–804.


[21] K. T. Jacob, C. B. Alcock, Thermodynamics and phase equilibria in the system Cu2O-CuO-Ga2O3, Rev. Int. Htes Temp. et Refract. 13 (1976) 37-42.


http://onlinelibrary.wiley.com/doi/10.1111/j.1151


[22] B. Onderka, K. Fitzner, Stability of the guggenitr phase in the CuO-MgO system, Arch. Met. 33 (1988) 135-143.


[23] Z. Panek, K. Fitzner, Gibbsfree energy of formation of In2O3 and CaIn2O4, Thermochim. Acta 97 (1986) 171-176.


https://doi.org/10.1016/0040-6031(86)87017-4


[24] K. Kameda, Y. Yoshida, S. Sakairi, Activities of liquid silver–indium alloys by EMF measurements using zirconia solid and fused salt electrolytes, J. Jpn. Inst. Met. 45 (1981) 614-620.


[25] G.R. Newns, J.M. Pelmore, Thermodynamics of indium oxide from measurements of electromotive force, J. Chem. Soc. A (1968) 360-362.


[26] D. Chatterji, R.W. Vest, Thermodynamic properties of the system indium-oxygen,  J. Am. Ceram. Soc. 55 (1972) 575-580.


https://doi.org/10.1111/j.1151-2916.1972.tb13440.x


[27] Y. D. Tretyakov, Tvierdofaznye Reakcji, Izd. Khimixa, 1978, Moskva


[28] A.A. Novikowa: PhD Thesis, University of Rostov upon Don, 2014.


[29] M. Bosacka, E. Filipek, P. Sulcova, Z. Dohnalova, A. Paczesna, Phase equilibria in the solid state and colour properties of the CuO–In2O3 system, J. Thermal Anal. Calorim., 109 (2012) 605-610.


https://doi.org/ 10.1007/s10973-012-2237-2


[30] M. Sasaki, M. Shimode, Fabrication of bipolar CuInO2 with delafossite structure, J. Phys. Chem. Solids. 64 (2003) 1675-1679.


https://doi.org/10.1016/S0022-3697(03)00071-4


[31] C.W. Teplin,  T. Kaydanova,  D.L. Young,  J.D. Perkins, D.S. Ginely, A. Ode, D.W. Readey, A simple method for the preparation of transparent p-type Ca-doped CuInO2 films: Pulsed-laser deposition from air-sintered Ca-doped Cu2In2O5 targets, Applied Phys. Lett. 85 (2004) 3789-3791.


https://doi.org/10.1063/1.1808498


[32] J-C. Lee, T-W. Heo, J-H. Lee, J-J Kim, Growth of CuInO2 thin film using highly dense Cu2O–In2O3 composite targets  Thin Solid Films, 518 (2009) 1234-1237.


https://doi.org/10.1016/j.tsf.2009.03.225


[33] A.V. Chawick,  A.N. Blacklocks, A. Rougier, C. Yaicle, A structural study of delafossite-type CuInO2 thin films, J. Physics, Conference Series, 249 (2010) 012045.


https://doi.org/10.1088/1742-6596/249/1/012045


[34] J.F. Marucco, La Chimie des Solides, EDP Sciences, 2004.


[35] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. 32 (1976) 751-767.


https://doi.org/10.1107/S0567739476001551


[36] A.M.M. Gadalla, J. White, “Equilibrium relations in the system Cu2O-CuO-Al2O3,Trans. Br. Ceram. Soc. 63 (1964) 39–62.

Published
2022/12/23
How to Cite
Jendrzejczyk-Handzlik, D., & Handzlik, P. (2022). Gibbs free energy of formation of Cu2In2O5 ternary phase determined by E.M.F. method. Journal of Mining and Metallurgy, Section B: Metallurgy, 58(3), 491-500. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/38642
Section
Original Scientific Paper