Gibbs free energy of formation of Cu2In2O5 ternary phase determined by E.M.F. method
Abstract
Employing electrochemical cells with the solid zirconia electrolyte:
Cu2O,CuO /O2- / air
Cu2In2O5, In2O3,Cu2O / O2-/ air
In,In2O3 /O2-/ Ni, NiO
Gibbs free energy of formation of solid Cu2In2O5 phase as well as that for In2O3 and CuO oxides was determined in the temperature range from 973 K to 1372 K. The results obtained in this study were used to derive Gibbs free energy change of the reaction of formation of the ternary compound from respective oxides:
2CuO + In2O3 = Cu2In2O5
which is equal to: (±1400 J/mol). Oxygen potential diagrams for the Cu–In–O system are also given at two temperatures.
References
[1] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Preparation of CuYO2 thin films by sol-gel method using copper acetate and yttrium acetate as metal sources, Nature 389 (1997) 939-942.
http://dx.doi.org/10.1038/40087
[2] H. Yanagi, T. Hase, S. Ibuki, K. Ueda, H. Hosono, Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure, Appl. Phys. Lett. 78 (2001) 1583-1585.
https://doi.org/10.1063/1.1355673.
[3] K. T. Jacob, C. B. Alcock, Thermodynamics of CuAlO2 and CuAl2O4 and Phase Equilibria in the System Cu2O-CuO-Al2O3, J. Amer. Ceram. Soc. 8 (1975) 192-195.
https://doi.org/10.1111/j.1151-2916.1975.tb11441.x
[4] D. Jendrzejczyk-Handzlik, K. Fitzner, Thermodynamic stability of copper gallates determined from the E.M.F. method, J. Solid State Chem. 232 (2015), 207-212.
https://doi.org/10.1016/j.jssc.2015.09.004
[5] G. Bergerhoff, H. Kasper, Die Kristallstruktur des Kupfer-Indium-Oxids, Cu2In2O5, Acta Crystallogr. B; 24B (1968) 388-391.
https://doi.org/10.1107/S0567740868002414
[6] J-C. Lee, Y-Woo Heo, J-H. Lee, J-J. Kim, Growth of CuInO2 thin film using highly dense Cu2O–In2O3 composite targets, Thin Solid Films; 518 (2009) 1234-1237.
https://doi.org/10.1016/j.tsf.2009.03.225
[7] J.I. Makiura, T. Higo, Y. Kurosawa, K. Murakami, S. Ogo, H. Tsuneki, Y. Hashimoto, Y. Sato .Y. Sekine, Fast oxygen ion migration in Cu–In–oxide bulk and its utilization for effective CO2 conversion at lower temperature, Chem. Sci. 12 (2021) 2108-2113.
https://doi.org/10.1039/D0SC05340F
[8] G. Skaria, A.K. Saikumar, A. D. Shivprasad , K. B. Sundaram, Annealing studies of copper indium oxide (Cu2In2O5) thin films prepared by RF magnetron sputtering, Coatings, 11 (2021) 1290-1297.
https://doi.org/10.3390/coatings11111290
[9] E. L. Belokoneva, L. I. Leonyuk, N. I. Leonyuk, Monocrystal synthesis and crystal structures In2CuO4, (Nd, Ce)2CuO4, Sm(Ba, Sm)Cu3-yOz tetragonal copper-deficient rare earth excess phase, Sverkhprovodimost, Fizika, Khimiya, Tekhnika 4 (1991) 563-569.
[10] W. Gessner , I.A. Chem, D.A. Wiss, R.G. Fed ,Ternary oxide M IMIIIO2
with MI = silver, copper, thallium and MIII = gallium, indium, thallium. Silikattechnik, 21 (1970) 45-47.
[11] M. Shimode, M. Sasaki, K. Mukaida, Synthesis of the delafossite-type CulnO2, J. Solid State Chem. 151 (2000) 16-20.
https://doi.org/10.1006/jssc.1999.8603
[12] S. Park, D. A. Keszler, Synthesis of 3R-Cu MO 2+ δ ( M=Ga, Sc, In), J. Solid State Chem. 173 (2003) 355-358.
https://doi.org/10.1016/s0022-4596(03)00110-5
[13] M. Sasaki, M. Shimode, Fabrication of bipolar CuInO2 with delafossite structure, J. Phys. Chem. Solids 64 (2003) 1675-1679.
https://doi.org/10.1016/S0022-3697(03)00071-4
[14.] J. Li, A. W. Sleight, C. Y. Jones, B. H. Toby, Trends in negative thermal expansion behavior for AMO2 (A=Cu or Ag; M=Al, Sc, In, or La) compounds with the delafossite structure, J. Solid State Chem. 178 (2005) 285-294.
https://doi.org/10.1016/j.jssc.2004.11.017
[15] L. Liu, K. Bai, H. Gong, P. Wu, First-principles study of Sn and Ca doping in CuInO2, Phys. Rev. B 72 (2005) 125204-1-6.
https://doi.org/10.1103/PhysRevB.72.125204
[16] Y. Yao, G. Xie, N. Song, X. Yu, R. Li, Thermodynamic Study on CuInO2 Preparation by Solid Reaction Method, Advanced Materials Research, 399-401 (2012) 2241-2244.
https://doi.org/10.4028/www.scientific.net/AMR.399-401.2241
[17] O. J. Gregory, I. M. Tougas, M. Amani, E. E. Crisman, Thermoelectric Properties and Microstructure of Cu-In-O Thin Film, ACS Combinatorials Science; 15 (2013) 580-584.
https://doi.org/10.1021/co4000634
[18] E. Pawlas-Foryst, K. T. Jacob, K. Fitzner, Thermodynamics of GdMnO3 and GdMn2O5 phases determined by the E.M.F. method Arch. Met. 51 (2006) 481-488.
[19] D. Jendrzejczyk-Handzlik, K. Fitzer, Thermodynamic properties of liquid silver-indium alloys determined from e.m.f measurements, Thermochim. Acta 433 (2005) 66-71.
https://doi.org /10.1016/j.tca.2005.02.005
[20] G.G. Charette, S. N. Flengas, Thermodynamic Properties of the Oxides of Fe, Ni, Pb, Cu and Mn by EMF Measurements, J Electrochem Soc 115 (1968) 796–804.
[21] K. T. Jacob, C. B. Alcock, Thermodynamics and phase equilibria in the system Cu2O-CuO-Ga2O3, Rev. Int. Htes Temp. et Refract. 13 (1976) 37-42.
http://onlinelibrary.wiley.com/doi/10.1111/j.1151
[22] B. Onderka, K. Fitzner, Stability of the guggenitr phase in the CuO-MgO system, Arch. Met. 33 (1988) 135-143.
[23] Z. Panek, K. Fitzner, Gibbsfree energy of formation of In2O3 and CaIn2O4, Thermochim. Acta 97 (1986) 171-176.
https://doi.org/10.1016/0040-6031(86)87017-4
[24] K. Kameda, Y. Yoshida, S. Sakairi, Activities of liquid silver–indium alloys by EMF measurements using zirconia solid and fused salt electrolytes, J. Jpn. Inst. Met. 45 (1981) 614-620.
[25] G.R. Newns, J.M. Pelmore, Thermodynamics of indium oxide from measurements of electromotive force, J. Chem. Soc. A (1968) 360-362.
[26] D. Chatterji, R.W. Vest, Thermodynamic properties of the system indium-oxygen, J. Am. Ceram. Soc. 55 (1972) 575-580.
https://doi.org/10.1111/j.1151-2916.1972.tb13440.x
[27] Y. D. Tretyakov, Tvierdofaznye Reakcji, Izd. Khimixa, 1978, Moskva
[28] A.A. Novikowa: PhD Thesis, University of Rostov upon Don, 2014.
[29] M. Bosacka, E. Filipek, P. Sulcova, Z. Dohnalova, A. Paczesna, Phase equilibria in the solid state and colour properties of the CuO–In2O3 system, J. Thermal Anal. Calorim., 109 (2012) 605-610.
https://doi.org/ 10.1007/s10973-012-2237-2
[30] M. Sasaki, M. Shimode, Fabrication of bipolar CuInO2 with delafossite structure, J. Phys. Chem. Solids. 64 (2003) 1675-1679.
https://doi.org/10.1016/S0022-3697(03)00071-4
[31] C.W. Teplin, T. Kaydanova, D.L. Young, J.D. Perkins, D.S. Ginely, A. Ode, D.W. Readey, A simple method for the preparation of transparent p-type Ca-doped CuInO2 films: Pulsed-laser deposition from air-sintered Ca-doped Cu2In2O5 targets, Applied Phys. Lett. 85 (2004) 3789-3791.
https://doi.org/10.1063/1.1808498
[32] J-C. Lee, T-W. Heo, J-H. Lee, J-J Kim, Growth of CuInO2 thin film using highly dense Cu2O–In2O3 composite targets Thin Solid Films, 518 (2009) 1234-1237.
https://doi.org/10.1016/j.tsf.2009.03.225
[33] A.V. Chawick, A.N. Blacklocks, A. Rougier, C. Yaicle, A structural study of delafossite-type CuInO2 thin films, J. Physics, Conference Series, 249 (2010) 012045.
https://doi.org/10.1088/1742-6596/249/1/012045
[34] J.F. Marucco, La Chimie des Solides, EDP Sciences, 2004.
[35] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. 32 (1976) 751-767.
https://doi.org/10.1107/S0567739476001551
[36] A.M.M. Gadalla, J. White, “Equilibrium relations in the system Cu2O-CuO-Al2O3,Trans. Br. Ceram. Soc. 63 (1964) 39–62.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.