The melting performance of high alumina blast furnace slags

  • Haiyan Zheng 86-24-83676543
  • Yan Zhang
  • Zhen Wang
  • Jinlei DU
  • Xin Jiang
  • Qiangjian Gao
  • Fengman Shen
Keywords: High alumina blast furnace slag; Melting characteristic temperature; Melting heat; Differential scanning calorimetry; Raman spectrum analysis

Abstract


With a view to understanding the performance of the blast furnace slag with high Al2O3 content, the effects of slag compositions (w(MgO)/w(Al2O3), w(CaO)/w(SiO2), and w(Al2O3)) on the melting performance (melting characteristic temperature and melting heat) of blast furnace slag with high Al2O3 content were investigated by the differential scanning calorimeter (DSC) method. The melting end temperature (Tend) for almost all the slags has no obvious change with the increase of w(MgO)/w(Al2O3). The experimental results indicate that increasing w(CaO)/w(SiO2) and w(Al2O3) of the slag will raise Tend of the blast furnace slag. Because the liquidus temperature of the slag moves toward elevated temperature due to the increasement of w(CaO)/w(SiO2) and w(Al2O3) based on the analysis of the phase diagram. The effects of compositions (w(MgO)/w(Al2O3), w(CaO)/w(SiO2), and w(Al2O3)) on the melting onset temperature (Tonset) of slag are complex, which is considered that some high melting point compounds are generated or eutectic reverse reactions appear when the slag compositions change. Higher w(MgO)/w(Al2O3) will lead to higher melting heat of the slag because higher w(MgO)/w(Al2O3) causes more CaO replaced by MgO and the lattice energy of MgO is higher than CaO lattice energy, which results in more energy required to destroy MgO lattice during the slag melting than that of CaO. In addition, more Al3+ replaces Si4+ in the slag to form [AlO4]5- tetrahedron with the increase of w(Al2O3) based on Raman spectra analysis, thus the depolymerization of the [AlO4]5- tetrahedron is required for more energy than that of [SiO4]4- tetrahedron, thus, the melting heat of the slag increases.

References

[1] H. C. Chuang, W. S. Hwang, S. H. Liu, Effects of basicity and FeO content on the softening and melting temperatures of the CaO-SiO2-MgO-Al2O3 slag system, Material transactions, 50 (6) (2009) 1448-1456.


https://doi.org/10.2320/matertrans.MRA2008372.


[2] I. V. Flores, L. A. da Silva, N. C. Heck, M. C. Bagatini, A thermodynamic model toward the comprehension of ferrous burden softening and melting using FactSage macro-processing, Metallurgical and Materials Transactions B, 50 (2019) 2681-2693.  https://doi.org/10.1007/s11663-019-01684-z


[3] C. C. Lan, S. H. Zhang, X. J. Liu, L. Qing, M. F. Jiang, Change and mechanism analysis of the softening-melting behavior of the iron-bearing burden in a hydrogen-rich blast furnace, International Journal of Hydrogen Energy, 45 (28) (2020) 14255-14265. https://doi.org/10.1016/j.ijhydene.2020.03.143.


[4] K. X. Jiao, Z. Y. Chang, C. L. Chen, J. L. Zhang, Thermodynamic properties and viscosities of CaO-SiO2-MgO-Al2O3 slags, Metallurgical and Materials Transactions B, 50 (2019) 1012–1022. https://doi.org/10.1007/s11663-018-1490-6.


[5] S. L. Wu, L. X. Wang, Y. N. Lu, K. Gu, Influence of high temperature interaction on the softening and melting behaviors of iron bearing materials in the blast furnace, Steel Research International, 89 (12) (2018) 1800041.


https://doi.org/10.1002/srin.201800041.


[6] E. F. Osborn, R. C. DeVries, K. H. Gee, H. M. Kraner, Optimum composition of blast furnace slag as deduced from liquidus data for the quaternary system CaO-MgO-Al2O3-SiO2, Jom, 6 (1954) 33-45. https://doi.org/10.1007/BF03397977.


[7] W. G. Kong, J. H. Liu, Z. J. He, Thermodynamic research on liquid phase formation behavior and crystallization process of blast furnace slag, Journal of Iron and Steel Research, 33 (2021) 375-384. https://doi.org/10.13228/j.boyuan.issn1001-0963.20200239.


[8] 郑汉燕,梁立生,杜建立,周小芬,蒋小强,高强强,沈富明,高铝2O3高炉渣在加热过程中的矿物转化和比热容表征,国际钢铁研究,92(3)(2021)2000448。https://doi.org/10.1002/srin.202000448


[9] 李国华, 刘明东, 蒋婷, 周婷海, 范晓华, 高铝铁矿的矿物学特征与分离, 中南大学学报(科学技术版), 40 (2009) 1165-1171.


[10] J. J. Dong, G. Wang, Y. G. Gong, Q. G. Xue, J. S, Wang, 水铝石型高铝铁矿石对烧结性能的影响, 炼铁与炼钢, 42 (1) (2015) 34-40.https://doi.org/10.1179/1743281214Y.0000000195


[11] A. Koryttseva, A. Navrotsky.1450°C下CaO-MgO–Al2O3–SiO2炉渣中氧化物组分溶解的高温量热研究,美国陶瓷学会杂志,100(2017)1172-1177。https://doi.org/10.1111/jace.14656


[12] 王志明, 吕强, 李峰明张华,邯郸钢铁高炉渣熔化性能,钢铁研究,21(05)(2009)59-62。https://doi.org/10.13228/j.boyuan.issn1001-0963.2009.05.011。


[13] 庞志明,吕秀文,蒋永永,林俊伟,林志明,炉渣中超高TiO2的高炉炼铁工艺:炉渣的粘度和熔融性能,冶金与材料学报B,51(2020)722-731。


https://doi.org/10.1007/s11663-019-01756-0


[14] 詹文林, 刘永, 邵天峰, 韩旭, 庞强海, 张建华, 邵志坚他评价了MgO/Al2O3比值对低碳耗高炉炉渣热行为和结构的影响。晶体, 11 (11) (2021) 1386.https://doi.org/10.3390/cryst11111386


[15] S. D. Mao, P. Du,BF炉渣中MgO含量降低对粘度和熔融温度的影响,钢铁研究杂志,27(2015)33-38。


https://doi.org/10.13228/j.boyuan.issn1001-0963.20140245。


[16] 高克, 焦克旭, 张建林.高钛渣的热力学性质和粘度。ISIJ International, 60 (9) (2020) 1902-1908.


 https://doi.org/10.2355/isijinternational.ISIJINT-2020-004


[17] 张建军, 焦坤新, 张建立, 马汉斌, 宗炳斌, 郭志勇, 王志勇, 高炉炉膛熔渣的热稳定性.ISIJ International, 61 (8) (2021) 2227-2236.https://doi.org/10.2355/isijinternational.ISIJINT-2021-066


[18] 姚磊, 任淑娴, 王晓强, 刘强春, 董立勇, 杨建峰, 刘建斌, Al2O3, MgO, 和 CaO/SiO2 对高铝高炉渣粘度的影响。国际钢铁研究, 87 (2) (2016) 241-249.https://doi.org/10.1002/srin.201500021


[19] 沈峰明、 郑汉燕、 蒋旭、 魏国强、 温秋玲.Al2O3在高炉冶炼中的影响及正确w(MgO)/w(Al2O3)配比的探讨.钢铁, 49 (01) (2014) 1-6.https://doi.org/10.13228/j.boyuan.issn0449-749x.2014.01.008。


[20] 沈峰明、 郑海燕、 高强军、 蒋秀生、 韩汉生、 龙福, 基于合适MgO/Al2O3配比的MgO添加方法及效应研究.炼铁。38 (2019) 22-26.


[21] K. Sunahara, K. Nakano, M. Hoshi, T. InadaS. KomatsuT. Yamamoto, 高Al2O3炉渣对高炉作业的影响, ISIJ International, 48 (4) (2008) 420-429.https://doi.org/10.2355/isijinternational.48.420


[22] 沈富明, 胡兴国, 郑汉燕, 蒋小军, 高强强, 韩汉生, 龙凤, 高炉炉渣中适当的MgO/Al2O3配比:根据观测数据分析合适的MgO/Al2O3配比。金属, 10 (6) (2020) 784.https://doi.org/10.3390/met10060784


[23] 孔文杰, 刘建华, 于永文, 侯孝明, 赵志坚他, w(MgO)/w(Al2O3)比值和碱度对高炉炉渣组织和冶金性能的影响.国际钢铁研究杂志,2(2021)1223-1232。


https://doi.org/10.1007/s42243-021-00622-1


[24] 徐春燕, 王春, 徐瑞志, 张建立, 焦克新, Al2O3对CaO-SiO2-Al2O3-MgO-Cr2O3矿渣粘度的影响.国际矿物,冶金和材料杂志,28(2021)797-803。https://doi.org/10.1007/s12613-020-2187-9


[25] 吴棣棣, 何小平, 梁永俊, 王强, CaO–SiO2 和 CaO–Al2O3 体系结构和性质的分子动力学模拟, 非结晶固体学报, 411 (1) (2015) 145-151.


https://doi.org/10.1016/j.jnoncrysol.2014.12.030


[26] J. G. Speight,朗格的化学手册。纽约:麦格劳-希尔专业,2005年。


W.M.海恩斯,D.R.利德,T.J.布鲁诺。CRC化学和物理手册。CRC出版社, 2016.https://doi.org/10.1201/9781315380476

Published
2023/08/15
How to Cite
Zheng, H., Zhang, Y., Wang, Z., DU, J., Jiang, X., Gao, Q., & Shen, F. (2023). The melting performance of high alumina blast furnace slags. Journal of Mining and Metallurgy, Section B: Metallurgy, 59(1), 101-111. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/39071
Section
Original Scientific Paper