Study on the drying characteristics of green pellets of ultrafine iron ore concentrate
Abstract
Ultrafine iron ore concentrate pose challenges such as poor pellet formation performance, low-bursting temperature, and a complex drying thermal regime. To examine the drying characteristics of green pellets made from ultrafine iron ore concentrate, the Weibull distribution function and Dincer model were employed to fit and analyze the corresponding drying curve. The effects of drying temperature and air speed on the strength of dried pellets were also studied. The findings revealed that the drying process of green pellets of ultrafine iron ore concentrate involved three stages: ascending speed, constant speed, and descending speed. As the drying temperature and air speed increased, the drying time decreased. The coefficient of determination R2 for the fitted Weibull distribution function model ranged from 0.995 to 0.998, while the R2 value for the Dincer model ranged from 0.990 to 0.996. Both fitted models aligned with the experimental data and proved to be effective. According to the Bi values obtained through the Dincer model, raising the drying air speed in the initial stage and the drying air temperature in the subsequent stage of the drying system could efficiently remove moisture, reduce the risk of green pellet rupture, and maintain productivity. The moisture diffusion coefficient and convective mass transfer coefficient increased with rising temperature and air velocity, following the order of Deff > Dcal > D*eff as determined by the Weibull distribution function, Dincer model, and Fick's second law. Additionally, the activation energy value of ultrafine iron ore concentrate for drying derived from the Arrhenius formula was 4515.60 J/(mol·K). Notably, increasing the drying temperature increased the strength of the dried particles due to their more compact and dense internal structure. This study offers theoretical support for simulating the drying of green ultrafine iron ore concentrate pellets and provides guidelines for selecting diverse drying conditions and designing drying equipment.
References
徐明, W.Wang, 孙建军, 张晓生, 低碳冶炼技术在将大比例颗粒投喂到超大型高炉中的应用, 中国冶金, 31 (2021) 98-103.https://doi.org/10.13228/j.boyuan.issn1006-9356.20210349>
朱,潘俊杰,L.Lu,R.J.福尔摩斯,铁矿石,伍德黑德出版社,剑桥,英国,P.435。
顾强,张永斌,李国华,钟强,罗建,苏志坚,饶明俊,彭志伟,蒋天,复合团聚法有效制备超细铁精矿高炉炉料,炼铁与炼钢,47(2020)908-914。https://doi.org/10.1080/03019233.2019.1641681>
何淑贞,冯海立,甘明,甘俊杰,超细铁矿石精矿对烧结矿的性状的影响,钢铁研究,27 (2015) 6-12.https://doi.org/10.13228/j.boyuan.issn1001-0963.20140058>
朱德强,徐明俊,潘,杨春春,田汉燕,提高超细精矿球化性的实验研究,钢铁研究杂志,29(2017)704-710。https://doi.org/10.13228/j.boyuan.issn1001-0963.20160387>
M.S. Zhou, Y.D.Wang, D.M ZHAO, L. HAN, 李晓春, 卢立明, 高比例磁铁矿精矿烧结技术的发展, 钢铁, 55 (2020) 1-9.https://doi.org/10.13228/j.boyuan.issn0449-749x.20190304>
张峰, 朱德强, 潘, 郭志强, 徐明杰.J, 西澳超细磁铁矿(WAU)磁铁矿精矿特征及其对颗粒焙烧性能的影响, Iron Steel Res. Int, 27 (2020) 770-781.https://doi.org/10.13403/j.sjqt.2016.06.074>
Pal, S. Ghorai, T. Venugopalan,高布莱恩铁矿石细粉在高炉赤铁矿造粒中的作用,矿物加工和采掘冶金,129 (2020) 299-307.https://doi.org/10.1080/25726641.2018.1505208>
李峰, 杨天, 刘志强, 周建华, 雷建, 王鹏,高压辊磨对含黄铁矿渣超细铁精矿绿色颗粒性能的影响,钢铁研究,34 (2022) 639-647.https://doi.org/10.13228/j.boyuan.issn1001-0963.20210220>
傅玉,蒋天,朱德勤,烧结造粒原理,中南理工大学出版社,长沙,P205。
G.Wong, X.H. Fan, M. Gan, Z.Y Ji, X.L Chen, Z.Y Tian, Z.Z Wang, 改进超细铁矿石制备的颗粒的热裂解性能, Powder Technology, 342 (2019) 873-879.https://doi.org/10.1016/j.powtec.2018.08.090>
L. Ljung, T.S. Lundström, B.D. Marjavaara, K Tano,空气湿度对单个铁矿石颗粒干燥的影响,干燥技术,29 (2011) 1101-1111.https://doi.org/10.1080/07373937.2011.571355>
范晓华, 田志华, 甘明, 陈晓U, 周晓文, 王国军,细粒磁铁矿精矿颗粒孔隙结构优化,矿山冶金工程,38 (2018) 71-75.https://doi.org/10.3969/j.issn.0253-6099.2018.01.016>
L.Ljung,T.S Lundström,B.D. Marjavaara,K,Tano.单个铁矿石颗粒的对流干燥 - CFD分析,国际传热和传质杂志,54(2011)3882-3890。https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.040>
M. Athayde,M. Cota,M.Covcevich,微波辅助铁矿石颗粒干燥:动力学评估,矿物加工和采掘冶金审查。39 (2018) 266-275.https://doi.org/10.1080/08827508.2017.1423295>
张强, 刘春霞, 卢明明, 于海, 人造磁铁矿绿色颗粒干燥特性动力学模型研究, 中南大学学报, 28 (2021) 89-99.https://doi.org/10.1007/s11771-021-4588-y>
程峰, 潘玲, 李楠, J.Q,陈.微波真空干燥过程中菊芋水分扩散率特性及模型拟合, 食品工业科学技术, 43 (2022) 33-40.https://doi.org/10.13386/j.issn1002-0306.2021070048>
白继伟, 王立, 肖海文, 鞠海燕, 刘志俊高,葡萄造型干燥的魏布尔分布及其应用,中国农业工程学报,29 (2013) 278-285.https://doi.org/10.3969/j.issn.1002-6819.2013.16.035>
朱汉英,赵海燕,张建,张文平,于旭立,王强,高志军,肖汉文,基于Dincer模型的不同干燥方法的中国茶菌干燥特性,中国传统药和中草药,51 (2020) 3911-3921.https://doi.org/10.7501/j.issn.0253-2670.2020.15.010>
A. Abazarpoor,M.Halali,使用球磨机和HPGR研磨方法研究铁矿石颗粒进料的粒度和形状,矿物加工的物理化学问题,53(2017)9080-919。http://dx.doi.org/10.5277/ppmp170219>
H.Y. Ju,S.H. Zhao,S. Mujumdar,X.M Fang,Z.J. Gao,Z.A. Zheng,肖海文,基于Weibull和Bi-Di模型的相对湿度控制热风干燥的节能改进,食品和生物制品加工,111(2018)20-29。https://doi.org/10.1016/j.fbp.2018.06.002>
I. Dincer,M. M,固体干燥的新型Bi-Di相关性的发展,国际传热与传质杂志,45(2002)3065-3069。https://doi.org/10.1016/S0017-9310(02)00031-5>
I. Dincer,M. M. Hussain,用于干燥应用的新生物数量和滞后因子相关性的发展,国际传热与传质杂志,47(2004)653-658。https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.006>
A.M. McMinn,利用Bi-G干燥相关性预测乳糖粉微波干燥的水分转移参数,国际食品研究,37(2004)1041-1047。https://doi.org/10.1016/j.foodres.2004.06.013>
C.V. Bezerra,L.H.M da Silva,D.F Corrêaet,A.M.C.Rodrigues,百香果皮干燥中水分扩散度和水分传递系数的建模研究,国际传热与传质杂志,85(2015)750-755。https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.027>
U. Sahin,H.K.Öztürk,脉冲真空渗透脱水(PVOD)对无花果干燥动力学的影响(榕树L),创新食品科学与新兴技术,36(2016)104-111。https://doi.org/10.1016/j.ifset.2016.06.003>
J.Wang, 穆伟生, 方志明, 穆琼达尔, 杨旭华, 薛立华, 谢立华, 肖汉文, 高志军, 张强, 汤普森无籽葡萄脉冲真空干燥:浆果成熟度对理化性质和干燥特性的影响, 食品与生物制品加工, 106 (2017) 117-126.https://doi.org/10.1016/j.fbp.2017.09.003>
S.K.Kawatra, V.C.laremboux, 铁矿石造粒:第一部分:基础,矿物加工和采掘冶金评论,(2021) 1-20.https://doi.org/10.1080/08827508.2021.1947269
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.