Effect of low aluminum additions in the microstructure and mechanical properties of hot forged high-manganese steels

  • Erick Uriel Morales Cruz Universidad Autónoma del Estado de Hidalgo
  • Marissa Vargas Ramírez Universidad Autónoma del Estado de Hidalgo
  • Azdrubal Lobo Guerrero Universidad Autónoma del Estado de Hidalgo
  • Alejandro Cruz Ramírez Metallurgy and Materials Department - ESIQIE-IPN
  • Eduardo Colin García Instituto Politécnico Nacional
  • Ricardo Gerardo Sánchez Alvarado Instituto Politécnico Nacional
  • Víctor Hugo Gutiérrez Pérez Instituto Politécnico Nacional
  • José Merced Martínez Vázquez Universidad Politécnica de Juventino Rosas
Keywords: Steel, hot forging, manganese, Hadfield, microstructure

Abstract


The present paper analyzes the effect of low aluminum additions and the hot forging process on the microstructure and non-metallic inclusions of high manganese steels. Four high-manganese steels (HMnS) were obtained by adding low aluminum contents of 1.1 and 1.5 wt. % in four medium carbon austenitic steels (0.3 - 0.4 wt. % C) with manganese contents of 17 and 22 wt. Samples of the as-cast steels were hot forged to 1100 °C to obtain a whole reduction of 70 %. The microstructural evolution was studied by microscopy techniques (OM, and SEM-EDS) and X-Ray diffraction measurements for the as-cast and hot forged steels. A typical grain columnar zone obtained during solidification of an ingot casting was obtained in the as-cast condition where the microstructure was constituted by non-metallic inclusions in a fully austenitic matrix. The non-metallic inclusions were identified as Al2O3 and MnS particles. The thermomechanical treatment allows the formation of an austenitic microstructure characterized by twins in high manganese steels while a duplex austenitic-martensitic microstructure was obtained for HMnS which contained the lowest manganese contents. The highest tensile properties were obtained for the steel 17Mn-1Al which showed the lowest grain size and finer non-metallic inclusions content. The hardness values were similar to those obtained in the as-cast condition. 

Author Biography

Alejandro Cruz Ramírez, Metallurgy and Materials Department - ESIQIE-IPN
Professor of Metallurgy

References

[1] G. Frommeyer, U. Brux, P. Neumann, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes, ISIJ International, 43 (2003) pp. 438-446. https://doi.org/10.2355/ISIJINTERNATIONAL.43.438


[2] G. Frommeyer, U. Brux, Steel Research International, 77 (2006) 627-633. https://doi.org/10.1002/srin.200606440


[3] A. Tomaszewska, M. Jablonska, G. Niewielsky, R. Kawalla, E. Hadasik, Research of selected properties of two types of high manganese steel wires. IOP Conf. Series: Materials Science and Engineering, Poland, 20 May 2011.


[4] O. Cobos O, A. Romero, M. Monsalve, Cooling kinetics effect on abrasive wear behavior of an ASTM A128 steel, Contemporary Engineering Sciences, 11 (71) (2018) 3531-3537. https://doi.org/10.12988/ces.2018.87362.


[5] K. Panchal, Life improvement of Hadfield manganese steel castings. International Journal of Scientific Development and Research, 5 (1) (2016) 817-825. http://www.ijsdr.org/papers/IJSDR1605148.pdf.


[6] A. Srivastava, K. Das, Microstructural characterization of Hadfield austenitic manganese steel, Journal of Materials Science, 43 (2008) 5654–5658. https://doi.org/10.4236/jmmce.2013.15042.


[7] S. Ayadi, A. Hadji, Effect of chemical composition and heat treatments on the microstructure and wear behavior of manganese Steel, International Journal of Metalcasting, (2020). https://doi.org/10.1007/s40962-020-00479-2.


[8] J. Jin, Y. Lee Y, Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP Steel, Acta Materialia, 4 (60) (2012) 1680-1688. https://doi.org/10.1016/j.msea.2018.02.003.


[9] A. Ghosh, Secondary steelmaking: principles and applications, CRC Press LLC: USA, 2001, p. 255.


[10] D. Matlock, J. Speer, E. Moor, P. Gibbs,  Recent developments in advanced high strength sheet steels for automotive: An overview, JESTECH, 15 (1) (2012) 1-12.


[11] S. Kim, G. Kim G, K. Chin, Development of high manganese TWIP steel with 980 MPa tensile strength,  Procceedings of the International Conference of New Developments in Advanced High-Strength Sheet Steels, AIST, Orlando Fl. (2008) 249-256.


[12] S. Lee, B. Cooman, Tensile behavior of intercritically annealed ultra-fine grained 8% Mn multi-phase steel, Steel Research International, 10 (8) (2015) 1170-1178. https://doi.org/10.1002/srin.201500038.


[13] T. Brune T, D. Senk, R. Walpot, B. Steennken, Hot ductility behavior of Boron containing microalloyed steels with varying manganese contents, Metallurgical and Materials Transactions B, 46 (2015) 1400-1408. https://doi.org/10.1007/s11663-015-0306-1.


[14] X. Yang, L. Zhang, C. Lai, S. Li S, M. Li, Z. Deng, A method to control the transverse corner cracks on a continuous casting slab by combining microstructure analysis with numerical simulation of the slab temperature field, Steel Research International, 1700480 (89) (2018) 1-8. https://doi.org/10.1002/srin.201700480.


[15] S. Sant, R. Smith, A study in the work-hardening behaviour of austenitic manganese steels, Journal of Materials Science, 22 (1987) 1808-1814. https://doi.org/10.1007/BF01132410.


[16] F. Chen, C. Chou C, P. Li, S. Chu, Effect of aluminium on TRIP Fe Mn Al alloy steels at room temperatura, Materials Science and Engineering A, 160 (2) (1993) 261-270.


[17] Y. Han, S. Hong, The effect of Al on mechanical properties and microstructures of Fe-32Mn-12Cr-xAl-0.4C cryogenic alloys, Materials Science and Engineering A, 222 (1) (1997) 76-83.


[18] S. Takaki, T. Furuya, Y. Tokunaga, Effect of Si and Al additions on the low temperature toughness and fracture mode of Fe-27Mn alloys, ISIJ International, 30 (1990) 632-638. https://doi.org/10.2355/isijinternational.30.632.


[19] R. Gurumayum, L. Yi-Jyun, Ch. Wei-Chun, Evidence of martensitic transformation in Fe-Mn-Al steel similar to maraging Steel, Metallurgical and Materials Transactions A, 52 (2021) 26-32. https://doi.org/10.1007/s11661-020-06054-y.


[20] L. Kučerová, H. Jirková, J. Volkmannová, J. Vrtáček, Effect of aluminium and manganese contents on the microstructure development of forged and annealed TRIP Steel, Manufacturing Technology, 18 (4) (2018) 605-610. https://doi.org/10.21062/ujep/146.2018/a/1213-2489/MT/18/4/605.


[21] V. Flaxa, J. Shaw, Material Application in ULSAB-AVC, Steel Grips, 1 (4) (2003) 255-261.


[22] M. Mehrkens, J. Fröber, Modern multi-phase steels in the BMW of the Porsche Cayenne, Steel Grips, 1 (4) (2003) 249-251.


[23] G. Frommeyer, O. Grässel, High strength TRIP-TWIP and superplastic steels development, properties, application, La Revue de Metallurgie-CIT, 10 (1998) 1299-1310.


[24] S. Allain, J. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys, Materials Science and Engineering A. 387-389 (2004) 158-162. https://doi.org/10.1016/j.msea.2004.01.059.


[25] R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, K. Kunishige, Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure. Scripta Materialia, 59 (9) (2008) 963-966. https://doi.org/10.1016/j.scriptamat.2008.06.050.


[26] Y. Estrin, H. Mecking, A unified phenomenological description of work hardening and 26 creep based on one-parameter models, Acta Metallurgica et Materialia, 32 (1984) 57-70.


[27] O. Bouaziz, S. Allain, C. Scott, P. Cugy, D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships, Solid State and Materials Science, 15 (2011) 141-168. https://doi.org/10.1016/j.cossms.2011.04.002.


[28] T. Furuhara, N. Kimura, T. Maki, Proceedings 1st International Conference on High Mn steel, The Korean Institute of Metals and Materials, Seoul, Korea, May 2011.


[29] K. Chin, Automotive-Circle, 12. Proceedings International Conference on Materials in car body engineering, Bad Nauheim, Germany, May 2010.


[30] R. Van Tol, L. Zhao, J. Sietsma, Proceedings 1st International Conference on High Mn steel, The Korean Institute of Metals and Materials, Seoul, Korea, May 2011.


[31] A. Hamada, L. Karjalainen, M. Somani, The influence of aluminium on hot deformation behaviour and tensile properties of high-Mn TWIP steels, Materials Science and Engineering A, 467 (1-2) (2007) 114-124. https://doi.org/10.1016/j.msea.2007.02.074.


[32] C. Igathinathane, L. Pordesimo, E. Columbus, E. Batchelor, S. Methuku, Shape identification and particle size distribution from basic shape parameters using ImageJ. Computers and Electronics in Agriculture, 63 (2008) 168-182. https://doi.org/10.1016/j.compag.2008.02.007.


[33] B. De Cooman, O. Kwon, K. Chin, State-of-the-knowledge on TWIP Steel, Materials Science and Technology, 28(5) (2012) 513-527. https://doi.org/10.1179/1743284711Y.0000000095.


[34] G. Reyes, A. Cruz, E. Colin, V. Gutiérrez, Thermodynamic analysis of the graphite flake formation of low manganese and sulfur gray cast iron, Archives of Metallurgy and Materials Science, 66 (1) (2021) 249-258. https://doi.org/10.24425/amm.2021.134782.


[35] N. NguyenVan, K. Kato, H. Ono,  Precipitation Behavior of AlN Inclusions in Fe-0.5Al-2.0Mn alloy under continuous unidirectional solidification process, Frontiers in Materials, 8 (736284) (2021) 1-8. https://doi.org/10.3389/fmats.2021.736284.


[36] T. Allam, W. Bleck, C. Klinkenberg, B. Kintscher, U. Krupp, J. Rudnizki, The continuous casting behavior of medium manganese steels, Journal of Materials Research and Technology, 15 (2021) 292-305. https://doi.org/10.1016/j.jmrt.2021.08.019.


[37] L. Zhang, B. Thomas, X. Wang, K. Cai, Evaluation and control of steel cleanliness - Review, 85th Steelmaking Conference Proceedings, ISS-AIME, Warrendale, PA, 2002.


[38] Y. Lee, J. Han, Current opinion in medium manganese steel, Materials Science and Technology 31:7 (2015) pp. 843-856. https://doi.org/10.1179/1743284714Y.0000000722.


[39] L. Qian, X. Feng, F. Zhang, Deformed microstructure and hardness of Hadfield high manganese Steel, Materials transactions 52 (8) (2011) 1623-1628. https://doi.org/10.2320/matertrans.M2011121.


[40] Y. Wen, H. Peng, H. Si, R. Xiong, D. Raabe, A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese Steel, Materials & Design, 55 (2014) 798-804. https://doi.org/10.1016/j.matdes.2013.09.057.


[41] B. Wietbrock, M. Bambach, S. Seuren, G. Hirt, Homogenization strategy and material characterization of high-manganese TRIP and TWIP steels, Materials Science Forum, 638-642 (2010) 3134-3139. https://doi.org/10.4028/www.scientific.net/MSF.638-642.3134.


[42] O. Grässel, G. Frommeyer, C. Derder, H. Hofmann, Phase transformations and mechanical properties of Fe-Mn-Si-A1 TRIP-Steels, Journal of Phyics: IV Proceedings, EDP Sciences, 7 (C5) (1997) 383-388. https://hal.archives-ouvertes.fr/jpa-00255657.


[43] J. Kowalska, J. Ryś, G. Cempura, Complex structural effects in deformed high-manganese Steel, Materials, 14 (6935) (2021) 1-19. https://doi.org/10.3390/ma14226935.


[44] R. Arreola, A. Cruz, J. Rivera, A. Romero, R. Sánchez, The effect of non-metallic inclusions on the mechanical properties of 32 CDV 13 steel and their mechanical stress analysis by numerical simulation, Theoretical and Applied Fracture Mechanics, 94 (2018) 134-146. https://doi.org/10.1016/j.tafmec.2018.01.013.


[45] F. Bahfie, B. Aji, F. Nurjaman, A. Junaedi, E. Sururiah, The effect of aluminum on the microstructure and hardness of high austenitic manganese Steel, IOP Conf. Series: Materials Science and Engineering, 285 (012020) (2018) 1-4. https://doi.org/10.1088/1757-899X/285/1/012020.


[46] G. Dini, A. Najafizadeh, R. Ueji, S. Monirvaghefi, Improved tensile properties of partially recrystallized submicron grained TWIP Steel, Materials Letters, 64 (1) (2011) 15-18. https://doi.org/10.1016/J.MATLET.2009.09.057.


[47] J. Hajšman, L. Kucerová, K. Burdová, The Influence of varying aluminium and manganese content on the corrosion resistance and mechanical properties of high strength steels, Metals, 11 (9) (2021) 1-16. https://doi.org/10.3390/met11091446.

Published
2023/08/15
How to Cite
Morales Cruz, E. U., Vargas Ramírez, M., Lobo Guerrero, A., Cruz Ramírez, A., Colin García, E., Sánchez Alvarado, R. G., Gutiérrez Pérez, V. H., & Martínez Vázquez, J. M. (2023). Effect of low aluminum additions in the microstructure and mechanical properties of hot forged high-manganese steels. Journal of Mining and Metallurgy, Section B: Metallurgy, 59(1), 77-90. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/40227
Section
Original Scientific Paper