Interdiffusion coefficient and atomic mobility for fcc Ag-Cu-Mg phase at 1073 K

  • Shiyi Wen Central South University
  • Yuling Liu
  • Qianhui Min
  • Chengbo Du
  • Shipeng Huang
Keywords: fcc Ag-Cu-Mg; Interdiffusion coefficient; Atomic mobility; CALTPP; Activation energy; Frequency factor

Abstract


In this work, the interdiffusion coefficient and atomic mobility for fcc Ag-Cu-Mg phase at 1073 K have been investigated by combining diffusion couple experiments and calculations. Based on the experimental composition profiles, the diffusion coefficients at intersection points in diffusion paths were calculated by means of Matano-Kirkaldy method. Using the thermodynamic descriptions available in literature, the atomic mobilities for fcc Ag-Cu-Mg phase were automatically optimized by numerical inverse method incorporated in the CALTPP (CALculation of ThermoPhysical Properties) program. Moreover, the obtained atomic mobilities were verified to be reliable through good agreements between the model-simulated composition profiles and the measured ones. In addition, three-dimensional surfaces for the interdiffusion coefficient, activation energy, and frequency factor were presented. The presently obtained atomic mobilities can be incorporated into the diffusion database for Ag-based alloys, which can contribute to microstructure simulation and materials design.

References

[1] F. Mao, M. Taher, O. Kryshtal, A. Kruk, A. Czyrska-Filemonowicz, Combinatorial Study of Gradient Ag–Al Thin Films: Microstructure, Phase Formation, Mechanical and Electrical Properties, Acs Applied Materials & Interfaces, 9 (2017) 6653.


[2] F. Findik, H. Uzun, Microstructure, hardness and electrical properties of silver-based refractory contact materials, Materials & Design, 24 (2003) 489-492.


[3] M. Aspiala, F. Tesfaye, P. Taskinen, Thermodynamic study in the Ag–Sb–S system by the EMF method, Journal of Chemical Thermodynamics, 98 (2016) 361-366.


[4] C. Wang, L. Yan, J. Han, X. Liu, Diffusion mobilities in the fcc Ag–Cu and Ag–Pd alloys, CALPHAD, 31 (2007) 57-64.


[5] K. Nomura, J. Sato, S. Kuma, H. Kumakura, K. Togano, N. Tomita, Characteristics of strengthened Ag substrates for Bi2Sr2CaCu2Ox doctorbladed tapes, Applied Physics Letters, 64 (1994) 912-914.


[6] L. Kibis, V. Avdeev, S. Koscheev, A. Boronin, Oxygen species on the silver surface oxidized by MW-discharge: Study by photoelectron spectroscopy and DFT model calculations, Surface ence, 604 (2010) 1185–1192.


[7] P. Rappaport, Methods of Processing SilverMagnesium Secondary Emitters for Electron Tubes, Journal of Applied Physics, 25 (1954) 288-292.


[8] Y. Liu, C. Zhang, C. Du, Y. Du, Z. Zheng, S. Liu, L. Huang, S. Wen, Y. Jin, H. Zhang, F. Zhang, G. Kaptay, CALTPP: A General Program to Calculate Thermophysical Properties, Journal of Materials Science & Technology, 42 (2020) 229-240.


[9] C. Du, Z. Zheng, Q. Min, Y. Du, Y. Liu, P. Deng, J. Zhang, S. Wen, D. Liu, A Novel Approach to Calculate Diffusion Matrix in Ternary Systems: Application to Ag-Mg-Mn and Cu-Ni-Sn Systems, CALPHAD, 68 (2020) 101708.


[10] S. Wen, Y. Du, Y. Liu, P. Zhou, Z.K. Liu, Atomic mobility evaluation and diffusion matrix for fcc_A1 Co–V–W alloys, Journal of Materials Science, 54 (2019) 13420-13432.


[11] C. Coughanowr, I. Ansara, R. Luoma, M. Hamalainen, H. Lukas, Assessment of the Cu-Mg System, International Journal of Materials Research, 82 (1991) 574-581.


[12] V. Witusiewicz, U. Hecht, S. Fries, S. Rex, The Ag–Al–Cu system: Part I: Reassessment of the constituent binaries on the basis of new experimental data, Cheminform, 385 (2005) 133-143.


[13] G. Ghosh, Dissolution and interfacial reactions of thin-film Ti/Ni/Ag metallizations in solder joints, Acta Materialia, 49 (2001) 2609-2624.


[14] C. Wang, N. Yan, J. Han, X. Liu, Diffusion mobilities in the fcc Ag-Cu and Ag-Pd alloys, CALPHAD 37 (2012) 57-64.


[15] Q. Min, Y. Liu, Y. Du, K. Cheng, B. Hu, S. Liu, H. Liu, Interdiffusion and atomic mobilities in fcc Ag–Mg and Ag–Mn alloys, CALPHAD, 65 (2019) 93-100.


[16] D. Liu, L. Zhang, Y. Du, S. Cui, W. Jie, Z. Jin, Development of An Atomic Mobility Database for Disordered and Ordered fcc Phases in Multicomponent Al alloys: Focusing on Binary Systems, International Journal of Materials Research, 104 (2013) 135-148.


[17] W. Zhang, Y. Du, D. Zhao, L. Zhang, H. Xu, S. Liu, Y. Li, S. Liang, Assessment of the atomic mobility in fcc Al-Cu-Mg alloys, CALPHAD, 34 (2010) 286-293.


[18] K. Laidler, The Development of the Arrhenius Equation, Journal of Chemical Education, 61 (1984) 494.

Published
2022/12/23
How to Cite
Wen, S., Liu, Y., Min, Q., Du, C., & Huang, S. (2022). Interdiffusion coefficient and atomic mobility for fcc Ag-Cu-Mg phase at 1073 K. Journal of Mining and Metallurgy, Section B: Metallurgy, 58(3), 501-506. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/40354
Section
Letters to Editor