Numerical simulation and application of argon blowing from tundish cover for bloom continuous casting

  • Chenhui Wu Pangang Group Research Institute Co., Ltd.
  • Yang Li
  • Ying-dong Liu
  • Xin Xie
  • Guo-rong Wu
  • Min Zhang
Keywords: Continuous casting, Bloom, Tundish, Argon blowing, Cleanliness, Inclusion

Abstract


During the continuous casting process, the residual oxygen in the tundish can be significantly reduced by argon blowing from the tundish cover (ABTC). As a result, the effect of protective casting can be obviously improved, which helps to reduce the reoxidation of molten steel in the tundish. In the present work, numerical models for the ABTC of a six-strand continuous casting machine were established and verified by the measured oxygen mass fraction in the tundish during the ABTC. The results indicate that the best conditions for ABTC are to install the argon pipes on either side of the tundish cover holes, seal the baking holes, and keep the stopper rod holes open. The argon flow rate should be ≥120m3/h during the period of empty tundish and ≥60m3/h during the period of normal casting. Based on the calculation results, industrial testsof ABTC were carried out. The results indicated that the increased nitrogen content in steel(△w[N]) decreased by 21.5% from 8.78×10-6 to 6.89×10-6 , from the end of RH to tundish, and the amount of inclusions except for MnS in bloom (scanned size: 8mm×8mm) decreased by 21.3% from 13.43 to 10.57, and the average size of inclusions decreased by 19.0% from 9.27μm to 7.51μm.

 

References

[1]        K.D. Kuang, Acta Metall. Sin. 45(3) (2009) 257-269. https://doi.org/10.3321/j.issn:0412-1961.2009.03.001


[2]        Y. Sahai, Metall. Mater. Trans. B 47(4), (2016) 2095-2106. https://doi.org/10.1007/s11663-016-0648-3


[3]        J. Zhang, J.H. Liu, S.J. Yu, D.X. Dong, G.L. Wang, S.Q. Li, Metals. 8(7) (2018) 560. https://doi.org/10.3390/met8070560


[4]        B.A. Webler, P.C. Pistorius, Metall. Mater. Trans. B 51(6) (2020) 2437-2452. https://doi.org/10.1007/s11663-020-01949-y


[5]        K. Sasai, Y. Mizukami, ISIJ Int. 40(1) (2000) 40-47. https://doi.org/10.2355/isijinternational.40.40


[6]        J.S. Zhang, L. Qing, S.F. Yang, Z.X. Chen, J.S. Li, Z.Y. Jiang, ISIJ Int. 59(7) (2019) 1167-1177. https://doi.org/10.2355/isijinternational.ISIJINT-2019-044


[7]        S. Chatterjee, D.H. Li, K. Chattopadhyay, Steel Res. Int. 88(9) (2017) 1600436. https://doi.org/10.1002/srin.201600436


[8]        S. Chatterjee, D.H. Li, K. Chattopadhyay, Metall. Mater. Trans. B 49(2) (2018) 756-766. https://doi.org/10.1007/s11663-018-1177-z


[9]        Q.R. Lai, Z.G. Luo, Q.F. Hou, T. Zhang, X.A. Wang, Z.S. Zou, ISIJ Int. 58(11) (2018) 2062-2070. https://doi.org/10.2355/isijinternational.ISIJINT-2018-319


[10]     Z.Q. Liu, B.K. Li, A. Vakhrushev, M.H. Wu, A. Ludwig, Steel Res. Int. 90(4) (2019) 1800117. https://doi.org/10.1002/srin.201800117


[11]     F.G. Liu, H.C. Zhou, L.F. Zhang, C.Y. Ren, J. Zhang, Y. Ren, W. Chen, Steel Res. Int. 92(9) (2021) 2100067. https://doi.org/10.1002/srin.202100067


[12]    Y. Li, C.G. Cheng, M.L. Yang, Z.X. Dong, Z.L. Xue, Metals 8(8) (2018) 590. https://doi.org/10.3390/met8080590


[13]     X.F. Qin, C.G. Cheng, Y. Li, W.L. Wu, J. Yan, J. Iron Steel Res. Int. 29(4) (2021) 1-13. https://doi.org/10.1007/s42243-021-00648-5


[14]     C.E. Aguilar-Rodriguez, J.A. Ramos-Banderas, E. Torres-Alonso, G. Solorio-Diaz, C.A. Hernández-Bocanegra, Metall. 61(11) (2018) 1055-1066. https://doi.org/10.1007/s11015-018-0607-0


[15]     A. Cwudziński, Steel Res. Int. 88(9) (2017) 1600484. https://doi.org/10.1002/srin.201600484


[16]     A. Cwudziiiski, J. South. Afr. Inst. Min. Metall. 118(5) (2018) 544-554. http://dx.doi.org/10.17159/2411-9717/2018/v118n5a11


[17]     F. Wang. Reoxidation phenomenon and inhibition mechanism of aluminum-deoxidized steel in Tangsteel, University of Science and Technology Beijing, Beijing, 2019, p.5


[18]     R. Story Scotte, E. Goldsmith Gerry, Iron Steel Technol. 3(9) (2006) 52-61.


[19]     Y.H. Sun, K.K. Cai, C.L. Zhao, Iron Steel 43(1) (2008) 22-25. https://doi.org/10.13228/j.boyuan.issn0449-749x.2008.01.014


[20]     Y.Q. Duan, X.H. Chen, Y.C. Wang, Iron Steel Vanadium Titanium 36(6) (2015) 123-127. https://doi.org/10.7513/j.issn.1004-7638.2015.06.023


[21]     Q.G. Liu, Y.Z. Wang, China Metall. 26(2) (2016) 25-30. https://doi.org/10.13228/j.boyuan.issn1006-9356.20150040


[22]     L.M. Fan, Steelmaking 26(5) (2010) 69-72.


[23]     J. Gao, S.X. Yan, Z.J. Ding, Spec. Steels 38(4) (2017) 27-31.


[24]     L.L. Yang, Y.P. Bao, J.H. Liu, X. Dong, Y. Ren, S. Zhang, G. Xu, Steelmaking 23(2) (2007) 34-37. https://doi.org/10.3969/j.issn.1002-1043.2007.02.010


[25]     G. Miao, J.C. Wang, X.L. Liu, S.S. Sun, 23(1) (2007) 49-52. https://doi.org/10.3969/j.issn.1002-1043.2007.01.014


[26]     J. Xie, J. Mater, Metall. 9(1) (2010) 15-17. https://doi.org/10.14186/j.cnki.1671-6620.2010.01.005


[27]     B. Launder, D.B. Spalding, Comput. Methods Appl. Mech. Eng. 3(2) (1974) 269-289. https://doi.org/10.1016/B978-0-08-030937-8.50016-7


[28]     X.F. Qin, C.G. Cheng, Y. Li, C.M. Zhang, J.L. Zhang, Y. Jin, Metals, 9(2) (2019) 225. https://doi.org/10.3390/met9020225

Published
2023/12/01
How to Cite
Wu, C., Li, Y., Liu, Y.- dong, Xie, X., Wu, G.- rong, & Zhang, M. (2023). Numerical simulation and application of argon blowing from tundish cover for bloom continuous casting. Journal of Mining and Metallurgy, Section B: Metallurgy, 59(2), 315-326. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/40847
Section
Original Scientific Paper