Microstructure and oxidation resistance of Pd+Zr and Pd+Hf co-doped aluminide coatings deposited on Mar-M247 nickel superalloy

  • Jolanta Romanowska Rzeszów University of Technology
  • Maryana Zagula-Yavorska Rzeszów University of Technology
Keywords: nickel superalloys, aluminide coatings, hafnium, zirconium, oxidation

Abstract


Pd+Zr and Pd+Hf co-doped aluminide coatings were deposited on the nickel superalloy Mar-M247 by palladium electroplating followed by zirconization-aluminization or hafnization-aluminization processes. Both coatings consisted of two zones, the outer and the interdiffusion zone consisting of the β-(Ni,Pd)Al phase. Hafnium and zirconium formed inclusions deposited at the edge of the zones and near the surface (only in the Zr+Pd modified coating). The oxidation resistance of the aluminide coating co-doped with Pd+Zr was significantly better than the one co-doped with Pd+Hf. The hafnium content in the Pd+Hf co-doped coating could exceed the limit.

 

References


References


[1] C. Jiang, L. Qian, M. Feng, H. Liu, Z. Bao, M. Chen, S. Zhu, F. Wang, Benefits of Zr addition to oxidation resistance of a single-phase (Ni,Pt)Al coating at 1373K, Journal of  Materials Science and Technology, 35 (2019) 1334-1344. https://doi.org/10.1016/j.jmst.2019.03.013


[2] M.M. Barjestech, S.M. Abbasi, K. Zangenech-Madar, K. Shirwani, Creep rupture properties of bare and coated polycristaline nickel-based superalloy Rene 80, Journal of Mining and Metallurgy, Section B: Metallurgy, 57(3) (2021) 401-412. https://doi.org/10.2298/JMMB201203036B


 [3] M.M. Barjestech, K. Zangenech-Madar, S.M. Abbasi, K.Shirwani, The effect of platinum-aluminide coating features on high temperature fatigue life of nickel-based superalloy Rene 80, Journal of Mining and Metallurgy, Section B: Metallurgy, 55(2) (2019) 235-251. https://doi.org/10.2298/JMMB181214029B


[4] B. Pint, I. Wright, Y. Lee, Y. Zhang, K. Prüßner, K. Alexander, Substrate and bond coat composition: factors affecting alumina scale adhesion, Materials Science and Engineering: A, 245 (1998), 201-211. https://doi.org/10.1016/S0921-5093(97)00851-4


[5] S. Hong, G. Hwang, W. Han, S. Kang, Cyclic oxidation of Pt/Pd-modified aluminide coating on a nickel-based superalloy at 1150ºC, Intermetallics, 17 (2009) 381-386. https://doi.org/10.1016/j.intermet.2008.08.014


[6] V. Tolpygo, D. Clarke, Rumpling of CVD (Ni,Pt)Al diffusion coatings under intermediate temperature cycling, Surface and Coating  Technology, 203 (2009) 3278-3285.     https://doi.org/10.1016/j.surfcoat.2009.04.016


[7] S. Alperine, P. Steinmetz, A. Constantini, P. Josso, Structure and high temperature performance of various palladium-modified aluminide coatings: a low cost alternative to platinum aluminides, Surface and Coating  Technology, 43/44 (1990) 437-360. https://doi.org/10.1016/0257-8972(90)90087-S

[8] S.J. Hong, G.H. Hwang, W.K. Han, S.G. Kang, Cyclic oxidation of Pt/Pd-modified aluminide coating on a nickel-based superalloy at 11500C, Intermetallics, 17 (2009) 381-386. https://doi.org/10.1016/j.intermet.2008.08.014.


[9] D. He, H. Guan, X. Sun, X. Jiang, Manufacturing, structure and high temperature corrosion on nickel-base superalloy M38, Thin Solid Films, 376 (2000) 144-150. https://doi:10.1016/S0040-6090(00)01198-6


[10] J.A. Nesbitt, B. Nagaraj, J. Williams, Effect of Hf additions to Pt aluminide bond coats on EB-PVD TBC life, Science Technology, 4 (2001) 78-92.  https://doi.org/10.1002/9781118787694.ch6


[11] D. Li, H. Guo, D. Wang, T. Zhang, S. Gong, X. Hubin, Cyclic oxidation of β-NiAl with various reactive element dopants at 12000C, Corrosion Science,  66 (2013) 125-135. https://doi:10.1016/j.corsci.2012.09.010


[12] Y. Wang, J.L. Smialek, M. Suneson, N. Glenn, Oxidation behavior of Hf-modified aluminide coatings on Inconel-718 at 10500C, Journal of Coating Science and Technology (2014) 25-45. http://doi.org/10.6000/2369-3355.2014.01.01.4


[13] R.W. Jackson, D.M. Lipkin, T.M. Pollock, Thermal barrier coatings adherence to Hf modified B2 NiAl bond coatings, Acta Materialia, 80 (2014) 39-47. http://doi.org/10.1016/j.actamat.2014.07.033


[14] Q. Wu, H.M. Chan, J.M. Rickman, M.P. Hammer, J. Smialek, Effect of Hf4+ concentration on oxygen grain-boundary diffusion in alumina, Journal of the American Ceramic Society, 98 (2015) 3346-3351.  https://doi.org/10.1111/jace.13762


[15] B.A. Pint, Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect, Oxidation of Metals, 45 (1996) 1-37. https://doi.org/10.1007/BF01046818


[16] H.B. Guo, D. Wang, H. Peng, S. Gong, H. Xu, Effect of Sm, Gd, Yb, Sc and Nd as reactive elements on oxidation behavior of β-NiAl at 12000C, Corrosion Science, 78 (2014) 369-377. https://doi.org/10.1016/j.corsci.2013.10.021


[17] Y. Wang, M. Suneson, G. Sayre, Synthesis of Hf-modified coatings on Ni-base superalloys, Surface and Coating  Technology, 15 (2011) 1218-1228. https://doi.org/10.1016/j.surfcoat.2011.08.031


[18] A.W. Cocchardt, Township W. US patent 1961; 3005705


[19] S. Hamadi, M. Bacos, M. Poulain, A. Seyeux, V. Maurice, P. Marcus, Oxidation resistance of Zr-doped NiAl coating termochemically deposited on a nickel-based superalloy. Surface and Coating  Technology, 204 (2009) 756-760. http://doi.org/10.1016/j.surfcoat.2009.09.073


[20] M. Zagula-Yavorska, Microstructure and oxidation performance of undoped and rhodium- doped aluminide coatings on Mar-M247 superalloy, Archives of Civil and Mechanical Engineering, 19 (2019) 832-841. https://doi.org/10.1016/j.acme.2019.04.001


[21] H. Mei, Y. Liu, L. Cheng, Comparison of oxidation resistance of NiCoCrAlTaY-coated and uncoated Mar-M247 superalloys in the air at 11500C, Journal of Materials Science, 47 (2012) 2278-2283. https://doi.org/10.1007/s10853-011-6041-3


[22] H. Mei, Y. Liu, L. Cheng, L. Zhang, Corrosion mechanism of a NiCoCrAlTaY coated Mar-M247 superalloy in molten salt vapour, Corrosion Science, 55 (2012) 201-204. https://doi.org/10.1016/j.corsci.2011.10.021


[23] L. Qian, X. Fang, K.T. Voisey, V. Nekouie, Z. Zhou, V.V. Silbersmidt, X. Hou, Incorporation and evolution of ZrO2 nano-particles in Pt-modified aluminide coating for high temperature applications, Surface and Coating  Technology, 311 (2017) 238-247. https://doi.org/10.1016/j.surfcoat.2016.12.106


[24] M. Zagula-Yavorska, J. Romanowska, M. Pytel, J. Sieniawski, The microstructure and oxidation resistance of the aluminide coatings deposited by the CVD method on pure nickel and hafnium-doped nickel superalloys, Archives of Civil and Mechanical Engineering, 15 (4) (2015) 862-872. https://doi.org/10.1016/j.acme.2015.03.006.


[25] J. Romanowska, J. Morgiel, Ł. Kolek, P. Kwolek, M. Zagula-Yavorska, Effect of Pd and Hf co-doping of aluminide coatings on pure nickel and CMSX-4 nickel superalloy, Archives of Civil and Mechanical Engineering, 18 (2018) 1421-1429. https://doi.org/10.1016/j.acme.2018.05.007


[26] J. Romanowska, E. Dryzek, J. Morgiel, K. Siemek, Ł. Kolek, M. Zagula-Yavorska, Microstructure and positron lifetimes of zirconium modified aluminide coatings, Archives of Civil and Mechanical Engineering, 18 (2018) 1150-1155. https://doi.org/10.1016/j.acme.2018.03.002


[27] J. Romanowska, J. Morgiel, M. Zagula-Yavorska, J. Sieniawski, Nanoparticles in hafnium-doped aluminide coatings, Materials Letters, 145 (2015) 162-166. https://doi.org/10.1016/j.matlet.2015.01.089


[28] Powder Diffraction File, Release 2002, PDF-2, International Centre for Diffraction Data, Pensylvania, USA 2002


[29] K. Kurosaki, D. Araki, Y. Ohishi, H. Muta, K. Konashi, S. Yamanaka, The δ’/δ phase transition in hafnium hydride and deuteride, Journal of Nuclear Science and Technology, 52 (2015) 541–545. http://doi.org/10.1080/00223131.2014.962638


[30] M. Pytel, T. Tokarski, M. Góral, R. Filip, Structure of Pd-Zr and Pt-Zr modified aluminide coatings deposited by a CVD method on nickel superalloys, Kovove Materialy, 57 (2019) 343-354. https://doi.org/10.4149/km_2019_5_343


[31] L. Wei, H. Peng, F. Jia, L. Zheng, S. Gong, H. Guo, Cyclic oxidation behavior of Hf/Zr co-doped EB-PVD β-NiAl coatings at 1200 ºC, Surface and Coatings Technology, 276 (2015) 721-725. https://doi.org/10.1016/j.surfcoat.2015.05.039


[32] C. Jiang, S. Li, H. Liu, Z. Bao, J. Zhang, S. Zhu, F. Wang, Effect of Hf addition in (Ni,Pt)Al bond coat on thermal cycling behavior of a thermal barrier coating system at 11000C, Corrosion Science, 166 (2020) 108424. https://doi.org/10.1016/j.corsci.2019.108424.


[33] P.Y. Hou, K. Priimak, Interfacial segregation, pore formation, and scale adhesion on NiAl alloys, Oxidation of Metals, 63 (2005), 113–130. https://doi.org/10.1007/s11085-005-1954-3

Published
2023/12/01
How to Cite
Romanowska, J., & Zagula-Yavorska, M. (2023). Microstructure and oxidation resistance of Pd+Zr and Pd+Hf co-doped aluminide coatings deposited on Mar-M247 nickel superalloy. Journal of Mining and Metallurgy, Section B: Metallurgy, 59(2), 243-254. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/41587
Section
Original Scientific Paper