ROLE OF Si AT A LOWER LEVEL ON THE MECHANICAL PROPERTIES OF Al-BASED AUTOMOTIVE ALLOY

  • Akib Abdullah Khan Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
  • Al-Kabir Hossain Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
  • Mohammad Salim Kaiser Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
Keywords: Automotive Al- alloy, T6 heat treatment, true stress-strain, impact strength, fractography

Abstract


Silicon effect at a lower level around 3.5 wt% on the tensile, impact, and fracture properties of Al-based automotive alloys has been investigated through T6 heat treatment. The results demonstrate that tensile strength increases in the aged alloys mainly due to development of Al2Cu and Mg2Si precipitates inside the Al-matrix. Higher Si-added alloy shows higher strength through Si-rich precipitates and hinders the true strain at tensile behaviour. The alloys ductility decreases with treatment temperature in favour of GP zones, βʹʹ, βʹ, β precipitates formation plus Qʹʹ phase and finally increases for precipitates coarsening. Microstructural study confirms the coarse grain boundary and plate-like eutectic phase when Si is added. Fractography shows a small dimple structure from the Al dendrites and the crack initiates through brittle Si-rich particles. 

Author Biography

Mohammad Salim Kaiser, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
Deputy Director DAERS office

References

[1]      D. Vuksanovic, V. Asanovic, J. Scepanovic, D. Radonjic, Effect of chemical composition and T6 heat treatment on the mechanical properties and fracture behaviour of Al-Si alloys for IC engine components, Journal of Mining and Metallurgy, Section B: Metallurgy, 57(2) (2021) 195-207.  https://doi.org/10.2298/JMMB190510014V


[2]      M. Zhang, Y. Tian, X. Zheng, Y. Zhang, L. Chen, J. Wang, Research Progress on Multi-Component Alloying and Heat Treatment of High Strength and Toughness Al–Si–Cu–Mg Cast Aluminum Alloys, Materials, 16(3) (2023) 1-18. https://doi.org/10.3390/ma16031065.


[3]      M.S. Kaiser, Solution treatment effect on tensile, impact and fracture behaviour of trace Zr added Al-12Si-1Mg-1Cu piston Alloy, Journal of the Institution of Engineers, India, Series D, 99(1) (2018) 109-114. https://doi.org/10.1007/s40033-017-0140-5.


[4]      M. Haghshenas, J. Jamali, Assessment of circumferential cracks in hypereutectic Al-Si clutch housings, Case Studies in Engineering Failure Analysis, 8 (2017) 11-20. https://doi.org/10.1016/j.csefa.2016.11.003.


[5]      S. Hegde, K. N. Prabhu, Modification of eutectic silicon in Al–Si alloys, Journal of Material Science, 43 (2008) 3009-3027. https://doi.org/10.1007/s10853-008-2505-5


[6]      I. J. Polmear, Light Alloys-Metallurgy of the Light Metals, 3rd edition, 1995, Arnold, UK.


[7]      M. N. E. Efzan, H. J. Kong, C. K. Kok, Review: Effect of alloying element on Al-Si alloys, Advanced Materials Research, 845 (2013) 355-359. https://doi.org/10.4028/www.scientific.net/AMR.845.355.


[8]      H. S. Abdo, A. H. Seikh, J. A. Mohammed, M. S. Solaiman, Alloying elements effects on electrical conductivity and mechanical properties of newly fabricated Al based alloys produced by conventional casting process, Materials, 14(14) (2021) 1-10. https://doi.org/10.3390/ma14143971.


[9]      W. S. Ebhota, T. C. Jen, Intermetallics formation and their effect on mechanical properties of Al-Si-X alloys, Intermetallic Compounds, IntechOpen, 2018, London, UK.


[10]  Y. H. Cho, J. M. Lee, J. W. Jin,  J. G. Jung, Improvement of the mechanical properties of Al-7Si-0.35Mg cast alloys by the optimised combination of alloying elements and heat treatment, Journal of Korea Foundry Society,  36(1) (2016) 1-9. https://doi.org/10.7777/JKFS.2016.36.1.1.


[11]  P. Krishnankutty, A. Kanjirathinkal, M. A. Joseph, M. Ravi, Effect of aging time on mechanical properties and wear characteristics of near eutectic Al–Si–Cu–Mg–Ni piston alloy. Transactions of the Indian Institute of Metals. 68(1) (2015) 25-30. https://doi.org/10.1007/s12666-015-0584-y.


[12]  M. S. Kaiser, S. Sabbir, M. S. Kabir, M. Rahman, M. A. Nur, Study of mechanical and wear behaviour of hyper-eutectic Al-Si automotive alloy through Fe, Ni and Cr addition, Materials Research, 21(4) (2018) 1-9. https://doi.org/10.1590/1980-5373-MR-2017-1096.  


[13]  R. X. Li, R. D. Li, Y. H. Zhao, L. Z. He, C. X. Li, H. R. Guan, Z.Q. Hu, Age-hardening behavior of cast Al–Si base alloy, Materials Letters, 58(15) (2004) 2096-2101, https://doi.org/10.1016/j.matlet.2003.12.027.


[14]  M. Zamani, S. Toschi, A. Morri, L. Ceschini, S.  Seifeddine, Optimisation of heat treatment of Al–Cu–(Mg–Ag) cast alloys, Journal of Thermal Analysis and Calorimetry, 139 (2020) 3427-3440. https://doi.org/10.1007/s10973-019-08702-x


[15]  B. Zhang, L. Zhang, Z. Wang, A. Gao, Achievement of high strength and ductility in Al–Si–Cu–Mg alloys by intermediate phase optimization in as-cast and heat treatment conditions, Materials, 13(647) (2020) 1-14. https://doi.org/10.3390/ma13030647.


[16]  P. A. B. Machado, J. M. V. Quaresma, A. Garcia, C. A. Santos, Investigation on machinability in turning of as-cast and T6 heat-treated Al-(3, 7, 12%)Si-0.6%Mg alloys, Journal of Manufacturing Processes, 75 (2022) 514-526. https://doi.org/10.1016/j.jmapro.2022.01.028.


[17]  L. Liu, J.H. Chen, S.B. Wang, C.H. Liu, S.S. Yang, C.L. Wu, The effect of Si on precipitation in Al–Cu–Mg alloy with a high Cu/Mg ratio, Materials Science and Engineering: A, Volume 606, 2014, Pages 187-195, https://doi.org/10.1016/j.msea.2014.03.079.


[18]  A. M. A. Mohamed, E. Samuel,Y. Zedan, A. M. Samuel, H. W. Doty, F. H. Samuel, Intermetallics formation during solidification of Al-Si-Cu-Mg cast alloys. Materials (Basel), 15(4) (2022) 1-24. https://doi.org/10.3390/ma15041335


[19]  F. Czerwinski, Heat Treatment, IntechOpen, 2012, Rijeka, Croatia.


[20]  K. Borodianskiy, A. Kossenko, M. Zinigrad, Improvement of the mechanical properties of Al-Si alloys by TiC nanoparticles, Metallurgical and Materials Transactions A, 44 (2013) 4948-4953.  https://doi.org/10.1007/s11661-013-1850-4


[21]  H. Hu, X. Wang, Effect of heat treatment on the in-plane anisotropyof as-rolled 7050 aluminum alloy, Metals, 6(79) (2016) 1-11. https://doi.org/10.3390/met6040079.


[22]  S. Amirkhanlou, Y. Zhang, S. Ji, Z. Fan Z, Young’s Modulus of Al–Si–Mg–Cu Based Alloy Under Different Heat Treatment Processes. In: Ratvik, A. (eds) Light Metals 2017, Midtown Manhattan, New York, USA.


[23]  S. Amirkhanlou, S. Ji, Casting lightweight stiff aluminum alloys: a review, Critical Reviews in Solid State and Materials Sciences, 45(3) (2020) 171-186, .  https://doi.org/10.1080/10408436.2018.1549975.


[24]  E. Sjolander, S. Seifeddine, The heat treatment of Al-Si-Cu-Mg casting alloys, Journal of Materials Processing Technology, 210(10) (2010) 1249-1259. .  https://doi.org/10.1016/j.jmatprotec.2010.03.020


[25]  M. S. Kaiser, S. Datta, A. Roychowdhury, M. K. Banerjee, Effect of scandium additions on the tensile properties of cast Al-6Mg alloys, Journal of Materials Engineering and Performance, 17(6) (2008), 902-907.  https://doi.org/10.1007/s11665-008-9242-4.


[26]  S. Toschi, Optimization of A354 Al-Si-Cu-Mg alloy heat treatment: effect on microstructure, hardness, and tensile properties of peak aged and overaged alloy, Metals, 8(11) (2018) 1-16. https://doi.org/10.3390/met8110961.


[27]  D. A. Lados, D. Apelian, J. F. Major, Fatigue crack growth mechanisms at the microstructure scale in Al-Si-Mg cast alloys: Mechanisms in Regions II and III, Metallurgical and Materials Transactions A, 37A(8) (2006) 2405-2418. https://doi.org/10.1007/BF02586215.


 

Published
2023/08/15
How to Cite
Khan, A. A., Hossain, A.-K., & Kaiser, M. S. (2023). ROLE OF Si AT A LOWER LEVEL ON THE MECHANICAL PROPERTIES OF Al-BASED AUTOMOTIVE ALLOY. Journal of Mining and Metallurgy, Section B: Metallurgy, 59(1), 147-154. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/42565
Section
Original Scientific Paper