Kinetic mechanism of FeCr2O4 reduction in carbon-containing iron melt
Abstract
Direct alloying of chromium by chromite attracts a lot of interest for its superiority in energy-saving and process simplification. The knowledge of chromium alloying by reduction of FeCr2O4, the main component of chromite, is key to understanding the mechanism of chromium alloying from chromite. The effect of melt composition (carbon and chromium addition) and temperature on the reduction of FeCr2O4 by carbon-containing iron melt was studied. The higher the carbon content is in the melt, the higher chromium recovery is obtained. Similarly, the higher temperature is favourable for the reduction of FeCr2O4. The reduction of FeCr2O4 was impeded by chromium addition due to the lower activity of carbon resulting from the strong attraction between carbon and chromium. The kinetics of FeCr2O4 reduction by carbon dissolving in iron melt were investigated, and the results indicated that the controlling step is the chemical reaction at the FeCr2O4/melt interface at 1550℃. And the calculated activation energy for the chemical reaction is 392.82 kJ/mol.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.