The magnesium-palladium-silver system: Thermodynamic properties of the liquid phase
Abstract
A drop calorimetry method was used to measure the partial and integral mixing enthalpies of Ag-Mg-Pd liquid solutions. The experiments were performed for six separate series of liquid alloys starting from the binary alloys with constant xAg/xMg ratios equal to 1/9, 1/3, 1/1, and 3/1 for (Ag0.10Mg0.90)1-xPdx and (Ag0.25Mg0.75)1-xPdx at 1116 K and (Ag0.50Mg0.50)1-xPdx and (Ag0.75Mg0.25)1-xPdx at 1279 K and xMg/xPd ratios of 9/1 and 4/1 for (Mg0.90Pd0.10)1-xAgx and (Mg0.80Pd0.20)1-xAgx at 1116 K. Then, using the thermodynamic properties of the binary systems in the form of the Redlich-Kister equations and the changes in mixing enthalpies provided by this study, the ternary interaction parameters were determined with the Muggianu model and our own software (TerGexHm). Based on the binary and ternary interaction parameters, the partial mixing enthalpies of Ag, Mg, and Pd were calculated for the same cross-sections where the measurements were conducted. These studies were the first step of an investigation of the Ag-Mg-Pd system before the calculation of the phase diagram for this ternary system.
References
[1] Z.-Q. Huang, H.-Y. Lai, H.-B. Zhou, H. Guo, Effect of casting and rolling process parameters on solidification welding line of magnesium alloy, Journal of Mining and Metallurgy, Section B: Metallurgy, 58 (1) (2022) 1 - 10. https://doi.org/10.2298/JMMB210305042H.
[2] M. Ma, R. Duan, L. Ouyang, X. Zhu, Z. Chen, C. Peng, M. Zhu, Hydrogen storage and hydrogen generation properties of CaMg2-based alloys, Journal of Alloys and Compounds, 691 (2017) 929–935. http://dx.doi.org/10.1016/j.jallcom.2016.08.307.
[3] L. Chen, C. Hu, F. Liu, Microstructure and hydrogen storage kinetics of Mg89RE11 (RE = Pr, Nd, Sm) binary alloys, RSC Advances, 9 (2019) 4445–4452. https://doi.org/10.1039/C8RA08983C.
[4] Z. J. Cao, L. Z. Ouyang, Y. Y. Wu, H. Wang, J. W. Liu, F. Fang, D. L. Sun, Q. G. Zhang, M. Zhu, Dual-tuning effects of In, Al, and Ti on the thermodynamics and kinetics of Mg85In5Al5Ti5 alloy synthesized by plasma milling, Journal of Alloys and Compounds, 623 (2015) 354–358. http://dx.doi.org/10.1016/j.jallcom.2014.10.200.
[5] J. Zou, X. Zeng, Y. Ying, X. Chen, H. Guo, S. Zhou, W. Ding, Study on the hydrogen storage properties of core-shell structured Mg-RE (RE (Nd, Gd, Er) nano-composites synthesized through arc plasma method, International Journal of Hydrogen Energy, 38 (2013) 2337-2346. https://doi.org/10.1016/j.ijhydene.2012.11.145.
[6] G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm=Ti, V, Mn, Fe and Ni) systems, Journal of Alloys and Compounds, 292 (1999) 247-252. https://doi.org/10.1016/S0925-8388(99)00442-9.
[7] B. D. Adams, A. Chen, The role of palladium in a hydrogen economy, Materials Today, 14, (2011), 282-289. https://doi.org/10.1016/S1369-7021(11)70143-2.
[8] A. Dębski, W. Gierlotka, W. Gąsior, Calorimetric studies and thermodynamic calculations of the Ag-Mg system, Journal of Alloys and Compounds, 891 (2022) 161937. https://doi.org/10.1016/j.jallcom.2021.161937.
[9] S. Terlicka, A. Dębski, A. Sypien, W. Gąsior, A. Budziak, Determination of thermophysical and thermodynamic properties, of Ag-Mg alloys, Materials Today. 29 (2021) 102946. https://doi.org/10.1016/j.mtcomm.2021.102946.
[10] A. Dębski, S. Terlicka, W. Gąsior, W. Gierlotka, M. Pęska, M. Polański, Thermodynamic properties of Mg-Pd liquid alloys, Journal of Molecular Liquids, 317(1) (2020) 114024. https://doi.org/10.1016/j.molliq.2020.114024.
[11] A. Dębski, M. Pęska, J. Dworecka-Wójcik, S. Terlicka, W. Gąsior, W. Gierlotka, M. Polański, Structural and calorimetric studies of magnesium-rich Mg-Pd alloys, Journal of Alloys and Compounds, 858 (2022) 158085. https://doi.org/10.1016/j.jallcom.2020.158085.
[12] A. Dębski, S. Terlicka, W. Gąsior, W. Gierlotka, M. Pęska, J. Dworecka-Wójcik, M. Polański, Materials, 14(3) (2021) 680. https://doi.org/10.3390/ma14030680.
[13] W. Gierlotka, A. Dębski, S. Terlicka, W. Gąsior, M. Pęska, M. Polański, Insight into Phase Stability in the Mg-Pd System: The Ab Initio Calculations, Journal of Phase Equilibria and Diffusion, 41 (2020) 681-686. https://doi.org/10.1007/s11669-020-00836-y.
[14] L.W. McKeehan, The crystal structure of silver-palladium and silver-gold alloys, Physical Review, 20 (1922) 424-432. https://doi.org/10.1103/PhysRev.20.424.
[15] R. Ruer, Über die Legierungen des Palladiums mit Silber, Zeitschrift für anorganische und allgemeine Chemie, 51 (1906) 315-320.
[16] Y.C. Venudhar, L. Iyengar, and K.V.K. Rao, X-Ray determination of the effect of temperature on the lattice parameters and the coefficients of thermal expansion of palladium-silver-gold alloys, Journal of the Less Common Metals, 58, (1978) P55-P60. https://doi.org/10.1016/0022-5088(78)90207-2.
[17] R.A. Oriani, W.K. Murphy, The heats of formation of solid nickel-copper and nickel-gold alloys, Acta Metallurgica, 8 (1960) 23-25. https://doi.org/10.1016/0001-6160(60)90135-8.
[18] J.P. Chan, R. Hultgren, The thermodynamic properties of silver + palladium alloys, The Journal of Chemical Thermodynamics, 1 (1969) 45-50. https://doi.org/10.1016/0021-9614(69)90035-4.
[19] K.M. Myles, Thermodynamic properties of solid palladium-silver alloys, Acta Metallurgica, 13 (1965) 109-113. https://doi.org/10.1016/0001-6160(65)90160-4.
[20] I. Karakaya, W.T. Thompson, The Ag−Pd (Silver-Palladium) system, Bulletin of Alloy Phase Diagrams vol. 9 (1988) 237-243. https://doi.org/10.1007/BF0288127.
[21] V.V. Karonik, V.E. Kolesnichenko, A.V. Ivanishchew, and V.V. Guseva, Сплавы редких металлов с особыми физическими свойствами, редкоземельные и благородные, металлы, (1983) 146-151.
[22] S.N. Sharma and Alarich Weiss, Thermal and X-ray investigations of the quasi-binary system Ag1−xPdxMg (if0 ⩽ x ⩽ 0.5), Journal of the Less Common Metals, 104 (1984) L5-L8. https://doi.org/10.1016/0022-5088(84)90459-4.
[23] A. Dębski, W. Gąsior, W. Gierlotka, M. Polański, Mixing enthalpies of liquid Ag-Mg-Pb alloys: experiment vs. thermodynamic modeling, Materials, 371 (2022) 121123. https://doi.org/10.3390/ma15207360.
[24] A. Dębski, W. Gąsior, W. Gierlotka, M. Polański, Calorimetric studies and thermodynamic modelling of liquid Mg-Pb-Pd alloys, Journal of Molecular Liquids, 371 (2023) 121123. https://doi.org/10.1016/j.molliq.2022.121123.
[25] Scientific Group Thermodata Europe. Unary SGTE Database 5.0. Available online: https://www.sgte.net/en/free-pure-substance-database (accessed on 19 September 2022).
[26] Y. M. Muggianu, M. Gambino, J.-P. Bros, Enthalpies de formation des alliages liquides bismuth-étain-gallium à 723 K, Journal de Chimie Physique, 72 (1975) 83-88. https://doi.org/10.1051/jcp/1975720083.
[27] O. Redlich, A. T. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Industrial Engineering Chemistry, 40 (1948) 345-348. https://doi.org/10.1021/ie50458a036.
[28] W. Gąsior, A. Dębski, M. Zabrocki, Thermodynamic description of the Ge-In-Li liquid alloys, Journal of Molecular Liquids, 260 (2018) 415-422. https://doi.org/10.1016/j.molliq.2018.03.118.
[29] G. Ghosh, C. Kantner & G. B. Olson, Thermodynamic Modeling of the Pd-X (X = Ag, Co, Fe, Ni) Systems, Journal of Phase Equilibria, 20 (1999) 295-308. https://doi.org/10.1361/105497199770335811.
[30] Y. Plevachuk, A. Yakymovych, S. Fürtauer, H. Ipser, H. Flandorfer, The enthalpies of mixing of liquid Ni-Sn-Zn alloys, Journal of Phase Equilibria and Diffusion, 35 (2014) 359–368. https://doi.org/10.1007/s11669-014-0288-8.>
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.