Characterization of cryorolled low carbon steel using ferrite-martensite starting microstructure

  • Anasyida Abu Seman Universiti Sains Malaysia
  • Siti Aminah Zakaria Universiti Sains Malaysia
  • Muhammad Syafiq Ahmad Universiti Sains Malaysia
  • Zuhailawati Hussain
  • Brij Kumar Dhidaw
  • Taiwo Ebenezer Taiwo Ebenezer Abioye
Keywords: low carbon steel; dual phase structure; ferrite-martensite; cryorolling; mechanical properties; corrosion resistance

Abstract


Cryo-rolling, a technique of severe plastic deformation (SPD) performed at cryogenic temperatures, has proven to be a promising technique for improving the microstructure and mechanical properties of low-carbon steels. Low carbon steel with a two-phase ferrite-martensite starting microstructure was subjected to cryogenic rolling at liquid nitrogen temperature to produce sheets with different deformation rates: 50%, 70%, and 90%. The microstructure, mechanical properties, and corrosion resistance were investigated. The results show that cryo-rolling effectively refines the microstructure and leads to a higher dislocation density and smaller grain size as the deformation rate increases. The cryo-rolled sample deformed at 90% has the highest grain aspect ratio (35.5), the smallest crystallite size (13.70 nm), the highest lattice strain (74.6 x 10-3), and the highest dislocation density compared to the samples deformed at 50% and 70%. This refined microstructure significantly improves the mechanical properties, with the cryo-rolled sample deformed at 90% exhibiting the highest hardness (152 HV), tensile strength (1020 MPa), and yield strength (950 MPa), corresponding to an increase of 175.6%, 344.0%, and 466.5%, respectively. In addition, cryo-rolling at 90% showed a decrease in corrosion resistance, with the lowest corrosion rate observed at 90% deformation (5.97 mm/year).

 

References

References 

[1] R. B. Figueiredo, T.G. Langdon, J. Mater. Res. Technol., 1 (1) (2012) 55-62. https://doi.org/10.1016/S2238-7854(12)70010-8 

[2] K. Changela, H. Krishnaswamy, R.K. Digavalli, Mater. Sci. Eng. A, 760 (2019) 7-18. http://dx.doi.org/10.1007/s11661-019-05532-2

[3] S. A. Zakaria, M. P. Lew, A. S. Anasyida, M. N. Idris, H. Zuhailawati, A. Ismail, Arab J Sci Eng., 46(8) (2021) 7815-7825. https://doi.org/10.1007/s13369-021-05507-9

[4] D. Fuloria, S. Goel, R. Jayaganthan, D. Srivastava, G. K. Dey, N. Saibaba, Trans. Nonferrous Met. Soc. China, 25 (2015) 2221-2229. https://doi.org/10.1016/S1003-6326(15)63835-3

[5] Y. Huang, T. G. Langdon, Mater. Today, 16 (2013) 85-93. https://doi.org/10.1016/j.mattod.2013.03.004

[6] A. Dhal, S. K. Panigrahi, M. S. Shunmugam, Strengthening and Joining by Plastic Deformation, Springer, Singapore, 2019, p.246. 

[7] Q. Yuan, G. Xu, S. Liu, M. Liu, H. Hu, G. Li, J. Met., 8 (2018) 1-14.  https://doi.org/10.3390/met8070518.

[8] F. Yaghoobi, R. Jamaati, H. J. Aval, Mater. Sci. Eng. A, 788 (2020) 139584. https://doi.org/10.1016/j.msea.2020.139584

[9] M. Balbi, I. Alvarez-armas, A. Armas, Mater. Sci. Eng. A, 733 (2018) 1-8. https://doi.org/10.1016/j.msea.2018.07.029 

[10] M. J. Molaei, A. Ekrami, Mater. Sci. Eng., 527 (2009)235-238. https://doi.org/10.1016/j.msea.2009.08.005

[11] K. Park, M. Nishiyanta, N. Nakada, T. Tsuchiyama, S. Takaki, Mater. Sci. Eng., 204 (2014) 135-141. https://doi.org/10.1016/j.msea.2014.02.058

[12] T. Y. Jing, G. Xu, W.C. Liang, Q. Yuan, Metallogr. Microstruct. Anal., 6 (2017) 233-239. https://doi.org/10.1007/s13632-017-0350-0. 

[13] Q.Yuan, G.Xu, M.Liu, S.Liu, H.J. Hu, Trans. Indian Inst. Met., 72(3) (2019) 741-749. https://doi.org/10.1007/s12666-018-1526-2 

[14] P. Movahed, S. Kolahgar, S. P.H. Marashi, M. Porauvari, N. Parvin, Mater. Sci. Eng. A, 518 (2009) 1-6. https://doi.org/10.1016/j.msea.2009.05.046

[15] E. Ahmad, F. Karim, K. Saeed, Manzoor, Tanvir, G. H. Zahid, Mater. Sci. Eng., 60 (2014) 1-8. https://doi.org/10.1088/1757-899X/60/1/012029 

[16] D. Singh, P. Nageswara Rao, R. Jayaganthan, Int. J. Miner. Metall., 20 (2013) 759–769. https://doi.org/10.1007/s12613-013-0794-4

[17] N. M. Anas, T. E. Abioye, A.S. Anasyida, B. K. Dhindaw, H. Zuhailawati, I. Azzura, Mater. Res. Express, 7 (2020) 016535. https://doi.org/10.1088/2053-1591/ab636c

[18] T. Ungar, Scr. Mater., 51 (2004) 777–781. https://doi.org/10.1016/j.scriptamat.2004.05.007

[19] K. S. V. B. R. Krishna, K. S. Chandra, R. Tejas, N. K. Naga, K. Sivaprasad, R. Narayanasamy, K. Venkateswarlu, Mater. Des., 67 (2015) 107-117. https://doi.org/10.1016/j.matdes.2014.11.022  

[20] B. Roy, K. Rajesh, D. Jayanta, Mater. Sci. Eng. A, 631 (2015) 241-247. https://doi.org/10.1016/j.msea.2015.02.050

[21] N. Saeidi, F. Ashrafizadeh, B. Niroumand, M. R. Forouzan, F. Barlat, Eng. Fract. Mech., 27 (2014) 97-103. https://doi.org/10.1016/j.engfracmech.2014.05.017

[22] M. Soleimani, H. Mirzadeh, C. Dehghanian, Mater. Res. Express., 7(1) (2020) 016522. https://doi.org/10.1088/2053-1591/ab62fa 

[23] N. Rangaraju, T. Raghuram, B. Vamsikrishna, K. Prasad Rao, P. Venugopal, Mater. Sci. Eng. A, 398 (2005) 246-251. https://doi.org/10.1016/J.MSEA.2005.03.026

[24] Y. Estrin, A. Vinogradov, Acta Mater., 61 (2013) 782-817. https://doi.org/10.1016/j.actamat.2012.10.038

[25] S. M. Hasan, A. Haldar, D. Chakrabarti, Mater. Sci. Eng., 28 (2012) 823-828. https://doi.org/10.1179/1743284711Y.0000000113

 

 

 

Published
2023/12/28
How to Cite
Abu Seman, A., Zakaria, S. A., Ahmad, M. S., Hussain, Z., Dhidaw, B. K., & Taiwo Ebenezer Abioye, T. E. (2023). Characterization of cryorolled low carbon steel using ferrite-martensite starting microstructure . Journal of Mining and Metallurgy, Section B: Metallurgy, 59(3), 443-454. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/43023
Section
Original Scientific Paper