Identification of Fe-bearing phases in the as-cast microstructure of AA6026 alloy and their evolution during homogenization treatment
Abstract
The Fe-bearing intermetallic phases present in the as-cast AA6026 alloy and their evolution during homogenization treatments at 480-550°C were investigated using optical microscopy, SEM, and TEM techniques in combination with EDS analysis. In addition to the α-Al(Fe,Mn)Si phase with dendritic morphology, two types of plate-like Fe-bearing microconstituents were revealed in the microstructure of the as-cast alloy. The EDS microanalysis and electron diffraction showed that one set of platelets represented only thin sections of α-Al(Fe,Mn)Si microconstituent. The other set of plate-like microconstituents was identified as a tetragonal, silicon-rich δ-Al4(Fe,Mn)Si2 phase. The formation of the δ-Al4(Fe,Mn)Si2 phase was attributed to the chemical composition of the alloy. During homogenization, the metastable δ-Al4(Fe,Mn)Si2 transformed into the α-Al(Fe,Mn)Si phase and fragmented. The dendritic α-Al(Fe,Mn)Si microconstituents were also fragmented. However, while the α-Al(Fe,Mn)Si microconstituents preserved a b.c.c. crystal lattice throughout the process, the product of the transformation of the δ-Al4(Fe,Mn)Si2 phase exhibited primitive cubic lattice.
References
- G. Gosh Al-Fe-Si (Aluminium-Iron-Silicon) in Ternary Alloy Systems: Phase Diagrams, Crystallographic and Thermodynamic Data · Light Metal Systems. Part 2 (G.Effenberg, S. Ilyenko), Springer Materials, Berlin Heidelberg, 2005, p. 359-409.
2. L. F. Mondolfo, Aluminium alloys, structure and prope rties, Butter Worths, London, 1979, p. 759.
3. T. Sheppard, Extrusion of Aluminium Alloys, Kluwer Academic Publishers Dordrecht/Boston/London, 1999, p. 253.
4. R. Naddella, D.G. Eskin, Q. Du, L. Katgerman. Macrosegregation in direct-chill casting of aluminium alloys, Progress in Materials Science, 53 (3) (2008) p. 421-480. https://doi.org/10.1016/j.pmatsci.2007.10.001
5. H. Tanihata, T. Sugawara, K. Matsuda, S. Ikeno, Effect of casting and homogenizing treatment conditions on the formation of Al-Fe-Si intermetallic compounds in 6063 Al-Mg-Si alloy, Journal of Materials Science, 34 (Mar) (1999) p. 1205-1210. https://doi.org/10.1023/A:1004504805781
6. J.E.Tibballs, J.A. Horst, C.J. Simensen. Precipitation of α-Al(Fe,Mn)Si from the melt, Journal of Materials Science, 36 (Feb) (2001) p. 937-941. https://doi.org/10.1023/A:1004815621313
7. N. Bayat, T. Carlberg, M. Cieslar, In-situ study of phase transformations during homogenization of 6005 and 6082 Al alloys, Journal of Alloys and Compounds, 725 (Nov) (2017) p. 504-509.
8. N. Bayat, T. Carlberg, M. Cieslar, In-situ study of phase transformations during homogenization of 6060 and 6063 Al alloys, Journal of Physics and Chemistry of Solids, 130 (Jul) (2019) p. 165-171. https://doi.org/10.1016/j.jpcs.2018.11.013
9. L. Sweet, S. M. Zhu, S. X. Gao, J.A. Taylor, M.A. Easton, The Effect of Iron Content on the Iron-Containing Intermetallic Phases in a Cast 6060 Aluminum Alloy, Metallurgical and Materials Transactions A, 42 (Jul) (2011) p. 1737-1749. https://doi.org/10.1007/s11661-010-0595-6
10. G. Mrówka-Nowotnik, J. Sieniawski, M. Wierzbiński, Intermetallic phase particles in 6082 aluminium alloy, Archives of Materials Science and Engineering, 28 (2) (2007) p. 69-76. https://doi.org/10.1515/amm-2015-0263
11. S. Kumar, P.S. Grant, K.A. Q. O’Reilly, Evolution of Fe Bearing Intermetallics During DC Casting and Homogenization of an Al-Mg-Si Al Alloy, Metallurgical and Materials Transactions A, 47 (April) (2016) p. 3000-3014. https://doi.org/10.1007/s11661-016-3451-5
12. K.B.S. Couto, S.R. Claves, W. H. van Geertuyden, W. Z. Misolek, M. Goncalves, Effects of homogenization treatment on microstruvture and hot ductility of aluminium alloy 6063, Materials and Technology, 21 (2) (2005), p. 263-269. https://doi.org/10.1179/174328405X18584
13. G. Sha, K. O’Reilly, B. Cantor, J. Worth, R. Hamerton, Growth related metastable phase selection in a 6xxx series wrought Al alloy, Materials Science and Engineering A, 304-306 (May) (2001) p. 612-616. https://doi.org/10.1016/S0921-5093(00)01545-8
14. A. Verma, S. Kumar, P.S. Grant, K.A.Q. O’Reilly, Influence of cooling rate on the Fe intermetallic formation in an AA6063 Al alloy, Journal of Alloys and Compounds, 555 (April) (2013) p. 274-282. https://doi.org/10.1016/j.jallcom.2012.12.077
15. S. Zajac, B. Hutchinson, A. Johansson, L.O. Gullman, Microstructure control and extrudability of Al-Mg-Si alloys microalloyed with manganese, Materials Science and Technology, 10 (4) (1994) p. 323-333. https://doi.org/10.1179/mst.1994.10.4.323
16. Y. Birol, Homogenization of EN AW 6005A alloy for improved extrudability, Metallurgical and Materials Transactions A, 44 (Jan) (2013) p. 504-511. https://doi.org/10.1007/s11661-012-1379-y
17. Y. Birol, The effect of homogenization practice on the microstructure of AA6063 billets, Journal of Materials Processing and Technology, 148 (2) (2004) p. 250-258. https://doi.org/10.1016/j.jmatprotec.2004.01.056
18. Y. Birol, Precipitation during homogenization cooling in AlMgSi alloys, Transactions of Nonferrous Metals Society of China, 203 (7) (2013) p. 1875-1881. https://doi.org/10.1016/S1003-6326(13)62672-2
19. Y. Wu, J. Xiong, R. Lai, X. Zhang, Z. Guo, The microstructure evolution of an Al-Mg-Si-Mn-Cu-Ce alloy during homogenization, Journal of Alloys and Compounds, 475 (1-2) (2009) p. 332-338. https://doi.org/10.1016/j.jallcom.2008.07.032
20. X. Liu, C. Wang, S-Y. Zhang, J-W. Song, X-L. Zhou, M. Zha, H-Y. Wang, Fe-bearing phase formation, microstructure evolution, and mechanical properties of Al-Mg-Si-Fe alloy fabricated by the twin-roll casting process, Journal of Alloys and Compounds, 886 (2021) p. 161202. https://doi.org/10.1016/j.jallcom.2021.161202
21. A.L. Dons, The Alstruc homogenization model for industrial aluminium alloys, Journal of Light Metals, 1 (2) (2001) p. 133-149. https://doi.org/10.1016/S1471-5317(01)00007-4
22. N. C.W. Kuijpers, F.J. Vermolen, C. Vuik, P.T.G. Koenis, K.E. Nilsen, S. van der Zwaag, The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al-Mg-Si alloys on the alloying elements, Materials Science and Engineering A, 394 (1-2) (2005) p. 9-19. https://doi.org/10.1016/j.msea.2004.09.073
23. N.C.W.Kuijpers, F.J. Vermolen, C. Vuik, S. van der Zwaag, A Model of the β-AlFeSi to α-Al(FeMn)Si Transformation in Al-Mg-Si Alloys, Materials Transactions, 44 (7) (2003) p.1448-1456. https://doi.org/10.2320/matertrans.44.1448
24. N.C.W.Kuijpers,, J. Tirel, D.N. Hanlon, S. van der Zwaag, Quantification of the evolution of the 3D intermetallic structure in a 60005A aluminium alloy during a homogenisation treatment, Materials Characterization, 48 (2002) p. 379-392. https://doi.org/10.1016/S1044-5803(02)00289-9
25. G.N. Haidemenopouls, H. Kamoutsi, A.D. Zervaki, Simulation of the transformation of iron intermetallics during homogenization of 6xxx series extrudable aluminum alloys, Journal of Materials Processing and Technology, 212 (11) (2012) p. 2255-2260. https://doi.org/10.1016/j.jmatprotec.2012.06.026
26. C.L. Liu, H. Azizi-Alizamini, N.C. Parson, W.J. Poole, Q. Du, Microstructure evolution during homogenization of Al-Mg-Si-Mn-Fe alloys: Modelling and experimental results, Transactions of Nonferrous Metals Society of China, 27 (4) (2017) p. 747-753. https://doi.org/10.1016/S1003-6326(17)60085-2
27. O. Engler, T. Schroter, C. Krause, Formation of Intermetallic Particles during Solidificationand Homogenization of Two Al-Mg-Si Alloys, Materials Science and Technology, 39 (1) (2023) p. 70-84. https://doi.org/10.1080/02670836.2022.2102279
28. A. Smolej, M. Soković, J. Kopač, V. Dragojević, Influence of heat treatment on the properties of the free-cutting AlMgSiPb alloy, Journal of Materials Processing and Technology, 53 (1995) p. 373–384. https://doi.org/10.1016/0924-0136(95)01994-P
29. O. Wouters, J.T.M. de Hosson, Lead induced intergranular fracture in aluminum alloy AA6262, Materials Science and Engineering A, 261 (1-2) (2003) p. 331–337. https://doi.org/10.1016/S0921-5093(03)00521-5
30. J. Faltus, M. Karlik, P. Hausild, Properties of free machining aluminium alloys at elevated temperature, Proc. International Conference on Aluminum Alloys, June 3-7 2012, Pittsburgh, USA, 2013: 873-878. https://doi.org/10.1007/978-3-319-48761-8_130
31. T. Radetić, M. Popović, A. Alil, B. Markoli, I. Naglič, E. Romhanji, Effect of homogenization temperature on microstructure and mechanical properties of Al-Mg-Si alloy containing low-melting point elements, Journal of Alloys and Compounds, 902 (May) (2022) p. 163719. https://doi.org/10.1016/j.jallcom.2022.163719
32. S. Yuan, L. Chen, J. Tang, G. Zhao, C. Zhang, J. Yu, Correlation between homogenization treatment and subsequent hot extrusion of Al-Mg-Si alloy, Journal of Materials Science, 54 (July) (2019) p. 9843-9856. https://doi.org/10.1007/s10853-019-03570-0
33. F. Alvarez-Antolin, J. Asensio-Lozano, A. Cofino-Villar, A. Gonzales-Pocino, Analysis of different solution treatments in the transformation of β-AlFeSi Particles into α-(FeMn)Si and their influence on different ageing treatments in Al-Mg-Si alloys, Metals 10 (5) (2020) p 620. https://doi.org/10.3390/met10050620
34. M. Quian, J.A. Taylor, J.Y. Yao, M.J. Couper, D.H. StJohn, A practical method for identifying intermetallic phase particles inaluminium alloys by electron probe microanalysis, Journal of Light Metals,1 (3) (2001), p. 187-193. https://doi.org/10.1016/S1471-5317(01)00012-8
35. M.V. Kral, H.R. McIntyre, M.J. Smillie, Identification of intermetallic phases in a eutectic Al-Si casting alloy using electron backscattered diffraction pattern analysis, Scripta Materialia, 51 (2004) p. 215-219. https://doi.org/10.1016/j.scriptamat.2004.04.015
36. J. Yu, Formation of intermetallic phases in Al-10Si-0.3Fe based alloys, PhD Thesis, Berlin. Technische Universitat Berlin, 2016.
37. L.G. Hou, H. Cui, Y.H. Cai, J.S. Zhang, Effect of (Mn+Cr) addition on the microstructure and thermal stability of spray-formed hypereutectic Al-Si alloys, Materials Science and Engineering A, 527 (1-2) (2009) p. 85-92. https://doi.org/10.1016/j.msea.2009.07.041
38. H.J. Huang, Y.H. Cai, H. Cui, J.F. Huang, J.P. He, J.S. Zhang, Influence of Mn addition on microstructure and phase formation of spray-deposited Al-25Si-xFe-yMn alloy, Materials Science and Engineering A, 502 (2009) p. 118-125. https://doi.org/10.1016/j.msea.2008.10.005
39. M. Timpel, N. Wanderka, B.S. Murty, J. Banhart, Three-dimensional visualization of the microstructure development of Sr-modified Al-15Si casting alloy using FIB-EsB tomography using, Acta Materialia, 58 (20) (2010) p. 6600-6608. https://doi.org/10.1016/j.actamat.2010.08.021
40. M.V. Kral, P.N.H. Nakashima, D.R.G. Mitchell, Electron microscope studies of Al-Fe-Si Intermetallics in an Al-11 Pct Si Alloy, Metallurgical and Materials Transactions A, 37 (2006) p.1987-1997. https://doi.org/10.1007/s11661-006-0141-8
41. D.G. Eskin, Physical Metallurgy of Direct Chill Casting of Aluminum Alloys,Taylor & Francis Group, Boca Roton, 2008.
42. G. Sha, K.A.Q. O’Reilly, B. Cantor, J.M. Titchmarsh, R.G. Hamerton, Quasi-peritectic solidification reactions in 6xxx series wrought Al alloys, Acta Materialia, 51 (2003) p. 1883-1897. https://doi.org/10.1016/S1359-6454(02)00595-5
43. C. Hsu, K.A.Q. O’Reilly, B. Cantor, R.Hamerton, Non-equilibrium reactions in 6xxx series Al alloys, Materials Science and Engineering A, 304-306 (2001) p.119-124. https://doi.org/10.1016/S0921-5093(00)01467-2
44. S. Cui, R. Mishra, I.-H. Jung, Thermodinamic analysis of 6xxx alloys: phase fraction diagrams, Journal of Mining and Metallurgy, Section B: Metallurgy, 54 (1) (2018) p. 119-131. https://doi.org/10.2298/JMMB170512052C
45. L. Yan, Y. Zhang, X. Li, Z. Li, F. Wang, H. Liu, B. Xiong, Microstructural evolution of Al-0.66Mg-0.8Si alloy during homogenization, Transactions of Nonferrous Metals Society of China, 24 (4) (2014) p. 939-945. https://doi.org/10.1016/S1003-6326(14)63146-0
46. Y.S. Choi, J.S. Lee, W.T. Kim, H.Y. Ra, Solidification behavior of Al-Si-Fe alloys and phase transformation of metastable intermetallic compound by heat treatment, Journal of Materials Science, 34 (1999) p. 2163-2168. https://doi.org/10.1016/S0921-5093(00)01467-2
47. L. Lodgaard, N. Ryum, Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys, Materials Science and Engineering A, 283 (2000) p. 144-152. https://doi.org/10.1016/S0921-5093(00)00734-6
48. J.E. Yoo, A. Shan, I.G. Moon, A study on composition and crystal structure of dispersoids in AlMgSi alloys, Journal of Materials Science, 34 (Jun) (1999) p. 2679-2683. https://doi.org/10.1023/A:1004673321013
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.