Identification of Fe-bearing phases in the as-cast microstructure of AA6026 alloy and their evolution during homogenization treatment

  • Tamara Radetic University of Belgrade, Faculty of Technology and Metallurgy
  • Miljana Popović University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
  • Mirjana Novaković University of Belgrade, Department of Atomic Physics, Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, Belgrade, Serbia
  • Vladimir Rajić University of Belgrade, Department of Atomic Physics, Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, Belgrade, Serbia
  • Endre Romhanji University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
Keywords: 6xxx alloys, Fe-bearing microconstituents, δ-Al4(Fe,Mn)Si2 phase, Homogenization, Phase transformation

Abstract


The Fe-bearing intermetallic phases present in the as-cast AA6026 alloy and their evolution during homogenization treatments at 480-550°C were investigated using optical microscopy, SEM, and TEM techniques in combination with EDS analysis. In addition to the α-Al(Fe,Mn)Si phase with dendritic morphology, two types of plate-like Fe-bearing microconstituents were revealed in the microstructure of the as-cast alloy. The EDS microanalysis and electron diffraction showed that one set of platelets represented only thin sections of α-Al(Fe,Mn)Si microconstituent. The other set of plate-like microconstituents was identified as a tetragonal, silicon-rich δ-Al4(Fe,Mn)Si2 phase. The formation of the δ-Al4(Fe,Mn)Si2 phase was attributed to the chemical composition of the alloy. During homogenization, the metastable δ-Al4(Fe,Mn)Si2 transformed into the α-Al(Fe,Mn)Si phase and fragmented. The dendritic α-Al(Fe,Mn)Si microconstituents were also fragmented. However, while the α-Al(Fe,Mn)Si microconstituents preserved a b.c.c. crystal lattice throughout the process, the product of the transformation of the δ-Al4(Fe,Mn)Si2 phase exhibited primitive cubic lattice.

 

References


  1. G. Gosh Al-Fe-Si (Aluminium-Iron-Silicon) in Ternary Alloy Systems: Phase Diagrams, Crystallographic and Thermodynamic Data · Light Metal Systems. Part 2 (G.Effenberg, S. Ilyenko), Springer Materials,  Berlin Heidelberg, 2005, p. 359-409.

    2.      L. F. Mondolfo, Aluminium alloys, structure and prope rties, Butter Worths, London, 1979, p. 759.


    3.      T. Sheppard, Extrusion of Aluminium Alloys, Kluwer Academic Publishers Dordrecht/Boston/London, 1999, p. 253.


    4.      R. Naddella, D.G. Eskin, Q. Du, L. Katgerman. Macrosegregation in direct-chill casting of aluminium alloys, Progress in Materials Science, 53 (3) (2008) p. 421-480. https://doi.org/10.1016/j.pmatsci.2007.10.001


    5.      H. Tanihata, T. Sugawara, K. Matsuda, S. Ikeno, Effect of casting and homogenizing treatment conditions on the formation of Al-Fe-Si intermetallic compounds in 6063 Al-Mg-Si alloy, Journal of Materials Science, 34 (Mar) (1999) p. 1205-1210. https://doi.org/10.1023/A:1004504805781


    6.      J.E.Tibballs, J.A. Horst, C.J. Simensen. Precipitation of α-Al(Fe,Mn)Si from the melt, Journal of Materials Science, 36 (Feb) (2001) p. 937-941. https://doi.org/10.1023/A:1004815621313


    7.      N. Bayat, T. Carlberg, M. Cieslar, In-situ study of phase transformations during homogenization of 6005 and 6082 Al alloys, Journal of Alloys and Compounds, 725 (Nov) (2017) p. 504-509.


    8.      N. Bayat, T. Carlberg, M. Cieslar,  In-situ study of phase transformations during homogenization of 6060 and 6063 Al alloys, Journal of Physics and Chemistry of Solids, 130 (Jul) (2019) p. 165-171. https://doi.org/10.1016/j.jpcs.2018.11.013


    9.      L. Sweet, S. M. Zhu, S. X. Gao, J.A. Taylor, M.A. Easton, The Effect of Iron Content on the Iron-Containing Intermetallic Phases in a Cast 6060 Aluminum Alloy, Metallurgical and Materials Transactions A, 42 (Jul) (2011) p. 1737-1749. https://doi.org/10.1007/s11661-010-0595-6


    10.  G. Mrówka-Nowotnik, J. Sieniawski, M. Wierzbiński, Intermetallic phase particles in 6082 aluminium alloy, Archives of Materials Science and Engineering, 28 (2) (2007) p. 69-76. https://doi.org/10.1515/amm-2015-0263


    11.  S. Kumar, P.S. Grant, K.A. Q. O’Reilly, Evolution of Fe Bearing Intermetallics During DC Casting and Homogenization of an Al-Mg-Si Al Alloy, Metallurgical and Materials Transactions A, 47 (April) (2016) p. 3000-3014. https://doi.org/10.1007/s11661-016-3451-5


    12.  K.B.S. Couto, S.R. Claves, W. H. van Geertuyden, W. Z. Misolek, M. Goncalves, Effects of homogenization treatment on microstruvture and hot ductility of aluminium alloy 6063, Materials and Technology, 21 (2) (2005), p. 263-269. https://doi.org/10.1179/174328405X18584


    13.  G. Sha, K. O’Reilly, B. Cantor, J. Worth, R. Hamerton, Growth related metastable phase selection in a 6xxx series wrought Al alloy, Materials Science and Engineering A, 304-306 (May) (2001) p. 612-616. https://doi.org/10.1016/S0921-5093(00)01545-8


    14.  A. Verma, S. Kumar, P.S. Grant, K.A.Q. O’Reilly, Influence of cooling rate on the Fe intermetallic formation in an AA6063 Al alloy, Journal of Alloys and Compounds, 555 (April) (2013) p. 274-282. https://doi.org/10.1016/j.jallcom.2012.12.077


    15.  S. Zajac, B. Hutchinson, A. Johansson, L.O. Gullman,  Microstructure control and extrudability of Al-Mg-Si alloys microalloyed with manganese, Materials Science and Technology, 10 (4) (1994) p. 323-333. https://doi.org/10.1179/mst.1994.10.4.323


    16.  Y. Birol, Homogenization of EN AW 6005A alloy for improved extrudability, Metallurgical and Materials Transactions A, 44 (Jan) (2013) p. 504-511. https://doi.org/10.1007/s11661-012-1379-y


    17.  Y. Birol, The effect of homogenization practice on the microstructure of AA6063 billets, Journal of Materials Processing and Technology, 148 (2) (2004) p. 250-258. https://doi.org/10.1016/j.jmatprotec.2004.01.056


    18.  Y. Birol, Precipitation during homogenization cooling in AlMgSi alloys, Transactions of Nonferrous Metals Society of China, 203 (7) (2013) p. 1875-1881. https://doi.org/10.1016/S1003-6326(13)62672-2


    19.  Y. Wu, J. Xiong, R. Lai, X. Zhang, Z. Guo, The microstructure evolution of an Al-Mg-Si-Mn-Cu-Ce alloy during homogenization, Journal of Alloys and Compounds, 475 (1-2) (2009) p. 332-338. https://doi.org/10.1016/j.jallcom.2008.07.032


    20.  X. Liu, C. Wang, S-Y. Zhang, J-W. Song, X-L. Zhou, M. Zha, H-Y. Wang, Fe-bearing phase formation, microstructure evolution, and mechanical properties of Al-Mg-Si-Fe alloy fabricated by the twin-roll casting process, Journal of Alloys and Compounds, 886 (2021) p. 161202. https://doi.org/10.1016/j.jallcom.2021.161202


    21.  A.L. Dons, The Alstruc homogenization model for industrial aluminium alloys, Journal of Light Metals, 1 (2) (2001) p. 133-149. https://doi.org/10.1016/S1471-5317(01)00007-4


    22.  N. C.W. Kuijpers, F.J. Vermolen, C. Vuik, P.T.G. Koenis, K.E. Nilsen, S. van der Zwaag, The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al-Mg-Si alloys on the alloying elements, Materials Science and Engineering A, 394 (1-2) (2005) p. 9-19. https://doi.org/10.1016/j.msea.2004.09.073


    23.  N.C.W.Kuijpers, F.J. Vermolen, C. Vuik, S. van der Zwaag, A Model of the β-AlFeSi to α-Al(FeMn)Si Transformation in Al-Mg-Si Alloys, Materials Transactions, 44 (7) (2003) p.1448-1456. https://doi.org/10.2320/matertrans.44.1448


    24.  N.C.W.Kuijpers,, J. Tirel, D.N. Hanlon, S. van der Zwaag, Quantification of the evolution of the 3D intermetallic structure in a 60005A aluminium alloy during a homogenisation treatment, Materials Characterization, 48 (2002) p. 379-392. https://doi.org/10.1016/S1044-5803(02)00289-9


    25.  G.N. Haidemenopouls, H. Kamoutsi, A.D. Zervaki, Simulation of the transformation of iron intermetallics during homogenization of 6xxx series extrudable aluminum alloys, Journal of  Materials Processing and Technology, 212 (11) (2012) p. 2255-2260. https://doi.org/10.1016/j.jmatprotec.2012.06.026


    26.  C.L. Liu, H. Azizi-Alizamini, N.C. Parson, W.J. Poole, Q. Du, Microstructure evolution during homogenization of Al-Mg-Si-Mn-Fe alloys: Modelling and experimental results, Transactions of Nonferrous Metals Society of China, 27 (4) (2017) p. 747-753. https://doi.org/10.1016/S1003-6326(17)60085-2


    27.  O. Engler, T. Schroter, C. Krause, Formation of Intermetallic Particles during Solidificationand Homogenization of Two Al-Mg-Si Alloys, Materials Science and Technology, 39 (1) (2023) p. 70-84. https://doi.org/10.1080/02670836.2022.2102279


    28.  A. Smolej, M. Soković, J. Kopač, V. Dragojević, Influence of heat treatment on the properties of the free-cutting AlMgSiPb alloy, Journal of Materials Processing and Technology, 53 (1995) p. 373–384. https://doi.org/10.1016/0924-0136(95)01994-P


    29.  O. Wouters, J.T.M. de Hosson, Lead induced intergranular fracture in aluminum alloy AA6262, Materials Science and Engineering A, 261 (1-2) (2003) p. 331–337. https://doi.org/10.1016/S0921-5093(03)00521-5


    30.  J. Faltus, M. Karlik, P. Hausild, Properties of free machining aluminium alloys at elevated temperature, Proc. International Conference on Aluminum Alloys, June 3-7 2012,  Pittsburgh, USA, 2013: 873-878. https://doi.org/10.1007/978-3-319-48761-8_130


    31.  T. Radetić, M. Popović, A. Alil, B. Markoli, I. Naglič, E. Romhanji, Effect of homogenization temperature on microstructure and mechanical properties of Al-Mg-Si alloy containing low-melting point elements, Journal of Alloys and Compounds, 902 (May) (2022) p. 163719. https://doi.org/10.1016/j.jallcom.2022.163719


    32.  S. Yuan, L. Chen, J. Tang, G. Zhao, C. Zhang, J. Yu, Correlation between homogenization treatment and subsequent hot extrusion of Al-Mg-Si alloy, Journal of Materials Science, 54 (July) (2019) p. 9843-9856. https://doi.org/10.1007/s10853-019-03570-0


    33.  F. Alvarez-Antolin, J. Asensio-Lozano, A. Cofino-Villar, A. Gonzales-Pocino, Analysis of different solution treatments in the transformation of β-AlFeSi Particles into α-(FeMn)Si and their influence on different ageing treatments in Al-Mg-Si alloys, Metals 10 (5) (2020) p 620. https://doi.org/10.3390/met10050620


    34.  M. Quian, J.A. Taylor, J.Y. Yao, M.J. Couper, D.H. StJohn, A practical method for identifying intermetallic phase particles inaluminium alloys by electron probe microanalysis, Journal of Light Metals,1 (3) (2001), p. 187-193. https://doi.org/10.1016/S1471-5317(01)00012-8


    35.  M.V. Kral, H.R. McIntyre, M.J. Smillie, Identification of intermetallic phases in a eutectic Al-Si casting alloy using electron backscattered diffraction pattern analysis, Scripta Materialia, 51 (2004) p. 215-219. https://doi.org/10.1016/j.scriptamat.2004.04.015


    36.  J. Yu, Formation of intermetallic phases in Al-10Si-0.3Fe based alloys, PhD Thesis,  Berlin. Technische Universitat Berlin, 2016.


    37.  L.G. Hou, H. Cui, Y.H. Cai, J.S. Zhang, Effect of (Mn+Cr) addition on the microstructure and thermal stability of spray-formed hypereutectic Al-Si alloys, Materials Science and Engineering A, 527 (1-2) (2009) p. 85-92. https://doi.org/10.1016/j.msea.2009.07.041


    38.  H.J. Huang, Y.H. Cai, H. Cui, J.F. Huang, J.P. He, J.S. Zhang, Influence of Mn addition on microstructure and phase formation of spray-deposited Al-25Si-xFe-yMn alloy, Materials Science and Engineering A, 502 (2009) p. 118-125. https://doi.org/10.1016/j.msea.2008.10.005


    39.  M. Timpel, N. Wanderka, B.S. Murty, J. Banhart, Three-dimensional visualization of the microstructure development of Sr-modified Al-15Si casting alloy using FIB-EsB tomography using, Acta Materialia, 58 (20) (2010) p. 6600-6608. https://doi.org/10.1016/j.actamat.2010.08.021


    40.  M.V. Kral, P.N.H. Nakashima, D.R.G. Mitchell, Electron microscope studies of Al-Fe-Si Intermetallics in an Al-11 Pct Si Alloy, Metallurgical and Materials Transactions A, 37 (2006) p.1987-1997. https://doi.org/10.1007/s11661-006-0141-8


    41.  D.G. Eskin,  Physical Metallurgy of Direct Chill Casting of Aluminum Alloys,Taylor & Francis Group, Boca Roton, 2008.


    42.  G. Sha, K.A.Q. O’Reilly, B. Cantor, J.M. Titchmarsh, R.G. Hamerton, Quasi-peritectic solidification reactions in 6xxx series wrought Al alloys, Acta Materialia, 51 (2003) p. 1883-1897. https://doi.org/10.1016/S1359-6454(02)00595-5


    43.  C. Hsu, K.A.Q. O’Reilly, B. Cantor, R.Hamerton, Non-equilibrium reactions in 6xxx series Al alloys, Materials Science and Engineering A, 304-306 (2001) p.119-124. https://doi.org/10.1016/S0921-5093(00)01467-2


    44.  S. Cui, R. Mishra, I.-H. Jung, Thermodinamic analysis of 6xxx alloys: phase fraction diagrams, Journal of Mining and Metallurgy, Section B: Metallurgy, 54 (1) (2018) p. 119-131. https://doi.org/10.2298/JMMB170512052C


    45.  L. Yan, Y. Zhang, X. Li, Z. Li, F. Wang, H. Liu, B. Xiong, Microstructural evolution of Al-0.66Mg-0.8Si alloy during homogenization, Transactions of Nonferrous Metals Society of China, 24 (4) (2014) p. 939-945. https://doi.org/10.1016/S1003-6326(14)63146-0


    46.  Y.S. Choi, J.S. Lee, W.T. Kim, H.Y. Ra, Solidification behavior of Al-Si-Fe alloys and phase transformation of metastable intermetallic compound by heat treatment, Journal of Materials Science, 34 (1999) p. 2163-2168. https://doi.org/10.1016/S0921-5093(00)01467-2


    47.  L. Lodgaard, N. Ryum, Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys, Materials Science and Engineering A, 283 (2000) p. 144-152. https://doi.org/10.1016/S0921-5093(00)00734-6


    48.  J.E. Yoo, A. Shan, I.G. Moon, A study on composition and crystal structure of dispersoids in AlMgSi alloys, Journal of Materials Science, 34 (Jun) (1999) p. 2679-2683. https://doi.org/10.1023/A:1004673321013



Published
2023/12/01
How to Cite
Radetic, T., Popović, M., Novaković, M., Rajić, V., & Romhanji, E. (2023). Identification of Fe-bearing phases in the as-cast microstructure of AA6026 alloy and their evolution during homogenization treatment. Journal of Mining and Metallurgy, Section B: Metallurgy, 59(2), 327-338. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/45445
Section
Original Scientific Paper