Recent advances in electrochemical recovery of rare earth elements from NdFeB magnets

  • Li Fu Hangzhou Dianzi University
  • Hassan Karimi Maleh
Keywords: Rare earth elements (REEs), NdFeB magnets, Electrochemical recycling, Hydrometallurgy, Sustainability

Abstract


Recent advances in electrochemical methods show promise for more sustainable recycling of rare earth elements (REEs) from end-of-life NdFeB permanent magnets. Demand for NdFeB magnets is rapidly growing for clean energy applications, motivating recycling efforts to diversify REE supplies. Core electrochemical steps involve selective dissolution of REE-rich phases at the anode and reduction of REE ions at the cathode. Pretreatment including demagnetization, mechanical size reduction, and leaching help liberate and concentrate the REEs. Thermal demagnetization and mechanical crushing make the magnets brittle and improve leachant penetration. Acid leaching dissolves REEs but co-dissolves iron. Molten salt electrolytes such as chlorides enable high temperature REE recovery while ionic liquids allow milder conditions but can decompose. Aqueous solutions have been most thoroughly investigated for versatility and affordability. Cathode materials like titanium, molybdenum, and stainless steel facilitate REE deposition while avoiding co-reduction of iron and cobalt. Additional purification is needed to isolate high purity REE oxides and metals, using techniques like solvent extraction, selective precipitation, and electroseparation. Key factors for optimal electrochemical recycling are maximizing selectivity for REEs, minimizing energy use and waste generation, and simplifying integration. While technical challenges remain, recent advances demonstrate electrochemical technologies can improve the sustainability of recycling critical REEs from permanent magnets.

References

[1]   V. Balaram, Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact, Geosci. Front. 10 (2019) 1285–1303. https://doi.org/10.1016/j.gsf.2018.12.005.


[2]   T. Liu, J. Chen, Extraction and separation of heavy rare earth elements: A review, Sep. Purif. Technol. 276 (2021) 119263. https://doi.org/10.1016/j.seppur.2021.119263.


[3]   R.K. Jyothi, T. Thenepalli, J.W. Ahn, P.K. Parhi, K.W. Chung, J.-Y. Lee, Review of rare earth elements recovery from secondary resources for clean energy technologies: Grand opportunities to create wealth from waste, J. Clean. Prod. 267 (2020) 122048. https://doi.org/10.1016/j.jclepro.2020.122048.


[4]   N.A. Chowdhury, S. Deng, H. Jin, D. Prodius, J.W. Sutherland, I.C. Nlebedim, Sustainable Recycling of Rare-Earth Elements from NdFeB Magnet Swarf: Techno-Economic and Environmental Perspectives, ACS Sustain. Chem. Eng. 9 (2021) 15915–15924. https://doi.org/10.1021/acssuschemeng.1c05965.


[5]   P.K. Sarswat, M. Leake, L. Allen, M.L. Free, X. Hu, D. Kim, A. Noble, G.H. Luttrell, Efficient recovery of rare earth elements from coal based resources: a bioleaching approach, Mater. Today Chem. 16 (2020) 100246. https://doi.org/10.1016/j.mtchem.2020.100246.


[6]   W. Zhang, A. Noble, X. Yang, R. Honaker, A Comprehensive Review of Rare Earth Elements Recovery from Coal-Related Materials, Minerals. 10 (2020) 451. https://doi.org/10.3390/min10050451.


[7]   A. Amato, A. Becci, I. Birloaga, I. De Michelis, F. Ferella, V. Innocenzi, N.M. Ippolito, C. Pillar Jimenez Gomez, F. Vegliò, F. Beolchini, Sustainability analysis of innovative technologies for the rare earth elements recovery, Renew. Sustain. Energy Rev. 106 (2019) 41–53. https://doi.org/10.1016/j.rser.2019.02.029.


[8]   A. Rybak, A. Rybak, Characteristics of Some Selected Methods of Rare Earth Elements Recovery from Coal Fly Ashes, Metals. 11 (2021) 142. https://doi.org/10.3390/met11010142.


[9]   S. Pavón, A. Fortuny, M.T. Coll, A.M. Sastre, Improved rare earth elements recovery from fluorescent lamp wastes applying supported liquid membranes to the leaching solutions, Sep. Purif. Technol. 224 (2019) 332–339. https://doi.org/10.1016/j.seppur.2019.05.015.


[10] A.T. Brown, K.J.Jr. Balkus, Critical Rare Earth Element Recovery from Coal Ash Using Microsphere Flower Carbon, ACS Appl. Mater. Interfaces. 13 (2021) 48492–48499. https://doi.org/10.1021/acsami.1c09298.


[11] J.P. Laurino, J. Mustacato, Z.J. Huba, Rare Earth Element Recovery from Acidic Extracts of Florida Phosphate Mining Materials Using Chelating Polymer 1-Octadecene, Polymer with 2,5-Furandione, Sodium Salt, Minerals. 9 (2019) 477. https://doi.org/10.3390/min9080477.


[12] K. Zhang, E. Fan, J. He, X. Li, Y. Huang, Long-term effects of electrochemical corrosion on magnetic properties of sintered NdFeB magnets, J. Magn. Magn. Mater. 538 (2021) 168309. https://doi.org/10.1016/j.jmmm.2021.168309.


[13] X. Li, J. Ni, Z. Wang, J. Li, Y. Xu, S. Zhou, K. Xu, X. Hao, C. Hu, X. Na, L. Luo, Electrochemical corrosion behavior of hot-deformed NdFeB magnet with different content of nano-TiC, J. Alloys Compd. 917 (2022) 165518. https://doi.org/10.1016/j.jallcom.2022.165518.


[14] Q. Zhou, S. Liu, Fabrication of Magnesium Phosphate Coating by Electrochemical Cathodic Method for Corrosion Protection of Sintered NdFeB Magnets, J. Mater. Eng. Perform. 30 (2021) 1200–1206. https://doi.org/10.1007/s11665-020-05421-5.


[15] K. Zhang, Z. Wang, J. He, X. Li, W. Gong, Y. Huang, Coupling effects of hydrogen and Dy/Nb on magnetic properties of sintered NdFeB magnets, Int. J. Hydrog. Energy. 47 (2022) 14027–14038. https://doi.org/10.1016/j.ijhydene.2022.02.154.


[16] X. Su, Electrochemical separations for metal recycling, Electrochem. Soc. Interface. 29 (2020) 55.


[17] A.V. Oladeji, J.M. Courtney, N.V. Rees, Copper deposition on metallic and non‐metallic single particles via impact electrochemistry, Electrochimica Acta. 405 (2022) 139838. https://doi.org/10.1016/j.electacta.2022.139838.


[18] E. Uysal, S. Al, E. Emil-Kaya, S. Stopic, S. Gürmen, B. Friedrich, Hydrometallurgical recycling of waste NdFeB magnets: design of experiment, optimisation of low concentrations of sulphuric acid leaching and process analysis, Can. Metall. Q. 62 (2023) 107–118. https://doi.org/10.1080/00084433.2022.2058152.


[19] M. Chandra, D. Yu, Q. Tian, X. Guo, Recovery of Cobalt from Secondary Resources: A Comprehensive Review, Miner. Process. Extr. Metall. Rev. 43 (2022) 679–700. https://doi.org/10.1080/08827508.2021.1916927.


[20] F. Xiao, W. Hu, J. Zhao, H. Zhu, Technologies of Recycling REEs and Iron from NdFeB Scrap, Metals. 13 (2023) 779. https://doi.org/10.3390/met13040779.


[21] J. Porcayo-Calderon, J.J. Ramos-Hernandez, E. Porcayo-Palafox, L.M. Martínez de la Escalera, J. Canto, J.G. Gonzalez-Rodriguez, L. Martinez-Gomez, Sustainable Development of Corrosion Inhibitors from Electronic Scrap: Synthesis and Electrochemical Performance, Adv. Mater. Sci. Eng. 2019 (2019) e6753658. https://doi.org/10.1155/2019/6753658.


[22] O. Dudarko, N. Kobylinska, V. Kessler, G. Seisenbaeva, Recovery of rare earth elements from NdFeB magnet by mono- and bifunctional mesoporous silica: Waste recycling strategies and perspectives, Hydrometallurgy. 210 (2022) 105855. https://doi.org/10.1016/j.hydromet.2022.105855.


[23] Y. Jeon, J. Hur, G.Y. Jeong, S. Sohn, J. Park, Selective and efficient extraction of Nd from NdFeB magnets via ionization in LiCl-KCl-CdCl2 melt, J. Alloys Compd. 860 (2021) 158424. https://doi.org/10.1016/j.jallcom.2020.158424.


[24] Y. Yang, C. Lan, L. Guo, Z. An, Z. Zhao, B. Li, Recovery of rare-earth element from rare-earth permanent magnet waste by electro-refining in molten fluorides, Sep. Purif. Technol. 233 (2020) 116030. https://doi.org/10.1016/j.seppur.2019.116030.


[25] P. Venkatesan, T. Vander Hoogerstraete, K. Binnemans, Z. Sun, J. Sietsma, Y. Yang, Selective Extraction of Rare-Earth Elements from NdFeB Magnets by a Room-Temperature Electrolysis Pretreatment Step, ACS Sustain. Chem. Eng. 6 (2018) 9375–9382. https://doi.org/10.1021/acssuschemeng.8b01707.


[26] A. Abbasalizadeh, A. Malfliet, S. Seetharaman, J. Sietsma, Y. Yang, Electrochemical Recovery of Rare Earth Elements from Magnets: Conversion of Rare Earth Based Metals into Rare Earth Fluorides in Molten Salts, Mater. Trans. 58 (2017) 400–405. https://doi.org/10.2320/matertrans.MK201617.


[27] X. Xu, S. Sturm, J. Zavasnik, K.Z. Rozman, Electrodeposition of a Rare-Earth Iron Alloy from an Ionic-Liquid Electrolyte, ChemElectroChem. 6 (2019) 2860–2869. https://doi.org/10.1002/celc.201900286.


[28] X. Xu, S. Sturm, Z. Samardzija, J. Vidmar, J. Scancar, K.Z. Rozman, Direct Recycling of Nd–Fe–B Magnets Based on the Recovery of Nd2Fe14B Grains by Acid-free Electrochemical Etching, ChemSusChem. 12 (2019) 4754–4758. https://doi.org/10.1002/cssc.201902342.


[29] E.B. Molodkina, M.R. Ehrenburg, I.A. Arkhipushkin, A.V. Rudnev, Interfacial effects in the electro(co)deposition of Nd, Fe, and Nd-Fe from an ionic liquid with controlled amount of water, Electrochimica Acta. 398 (2021) 139342. https://doi.org/10.1016/j.electacta.2021.139342.


[30] V. Prakash, Z.H.I. Sun, J. Sietsma, Y. Yang, Chapter 22 - Simultaneous Electrochemical Recovery of Rare Earth Elements and Iron from Magnet Scrap: A Theoretical Analysis, in: I. Borges De Lima, W. Leal Filho (Eds.), Rare Earths Ind., Elsevier, Boston, 2016: pp. 335–346. https://doi.org/10.1016/B978-0-12-802328-0.00022-X.


[31] W. Hu, F. Xiao, D. Wang, J. Zhao, J. Wang, H. Zhu, Recovery of Neodymium and Iron from Spent Ndfeb by Combined Electrochemical-Hydrometallurgical Process, (2023). https://doi.org/10.2139/ssrn.4326277.


[32] R. Schulze, A. Abbasalizadeh, W. Bulach, L. Schebek, M. Buchert, An Ex-ante LCA Study of Rare Earth Extraction from NdFeB Magnet Scrap Using Molten Salt Electrolysis, J. Sustain. Metall. 4 (2018) 493–505. https://doi.org/10.1007/s40831-018-0198-9.


[33] H. Chung, L. Prasakti, S.R. Stopic, D. Feldhaus, V.S. Cvetković, B. Friedrich, Recovery of Rare Earth Elements from Spent NdFeB Magnets: Metal Extraction by Molten Salt Electrolysis (Third Part), Metals. 13 (2023) 559. https://doi.org/10.3390/met13030559.


[34] P. Venkatesan, Electrochemical recycling of rare earth elements from NdFeB magnet waste, Delft Univ. Technol. Institutional Repos. (2019).


[35] A. Abbasalizadeh, L. Teng, S. Seetharaman, J. Sietsma, Y. Yang, Chapter 24 - Rare Earth Extraction from NdFeB Magnets and Rare Earth Oxides Using Aluminum Chloride/Fluoride Molten Salts, in: I. Borges De Lima, W. Leal Filho (Eds.), Rare Earths Ind., Elsevier, Boston, 2016: pp. 357–373. https://doi.org/10.1016/B978-0-12-802328-0.00024-3.


[36] Y. Jeon, G.Y. Jeong, J. Hur, J. Park, Experimental Design for Recovery of Nd from NdFeB Magnet by using Molten Salt Technique and Liquid Cd Cathode, in: Jeju, 2019: pp. 23–24.


[37] P. Venkatesan, T.V. Hoogerstraete, T. Hennebel, K. Binnemans, J. Sietsma, Y. Yang, Selective electrochemical extraction of REEs from NdFeB magnet waste at room temperature, Green Chem. 20 (2018) 1065–1073. https://doi.org/10.1039/C7GC03296J.


[38] R. Wu, R. Liu, X. Liu, J. Zhang, W. Xue, Y. Yang, P350-N235 synergistic extraction system used for the recovery of Nd(III) from waste NdFeB magnets, Sep. Purif. Technol. 319 (2023) 124042. https://doi.org/10.1016/j.seppur.2023.124042.


[39] P. Venkatesan, Z.H.I. Sun, J. Sietsma, Y. Yang, An environmentally friendly electro-oxidative approach to recover valuable elements from NdFeB magnet waste, Sep. Purif. Technol. 191 (2018) 384–391. https://doi.org/10.1016/j.seppur.2017.09.053.


[40] I. Makarova, E. Soboleva, M. Osipenko, I. Kurilo, M. Laatikainen, E. Repo, Electrochemical leaching of rare-earth elements from spent NdFeB magnets, Hydrometallurgy. 192 (2020) 105264. https://doi.org/10.1016/j.hydromet.2020.105264.



[41] I. Makarova, J. Ryl, Z. Sun, I. Kurilo, K. Górnicka, M. Laatikainen, E. Repo, One-step recovery of REE oxalates in electro-leaching of spent NdFeB magnets, Sep. Purif. Technol. 251 (2020) 117362. https://doi.org/10.1016/j.seppur.2020.117362.

Published
2024/08/26
How to Cite
Fu, L., & Karimi Maleh, H. (2024). Recent advances in electrochemical recovery of rare earth elements from NdFeB magnets. Journal of Mining and Metallurgy, Section B: Metallurgy, 60(1), 1-14. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/46129
Section
Review Paper