Smelting of low-grade saprolitic nickel ore in DC-Arc furnace

  • Fajar Nurjaman National Research and Innovation Agency
  • Hafid Zul Hakim Institut Teknologi Sumatera
  • Bagus Septiansyah Institut Teknologi Sumatera
  • La Ode Arham Institut Teknologi Sumatera
  • Anton Sapto Handoko National Research and Innovation Agency
  • Fathan Bahfie National Research and Innovation Agency
  • Ijang Suherman National Research and Innovation Agency
  • Harta Haryadi National Research and Innovation Agency
  • Triswan Suseno National Research and Innovation Agency
  • Yuliana Sari National Research and Innovation Agency
  • Bambang Suharno National Research and Innovation Agency
Keywords: nickel ore, smelting, DC-arc furnace, ferronickel

Abstract


Most nickel laterite smelting to produce ferronickel is carried out using an AC-arc furnace. Although the DC-arc furnace is advantageous in the smelting of fine ore, it is rarely used for nickel laterite. In this work, the effects of slag basicity and stoichiometry of reductant addition during smelting of low-grade saprolitic nickel ore on nickel content and nickel recovery, yield, and phases of the slag were studied in detail. The smelting process was conducted in a laboratory DC-arc furnace with a a single electrode of 30 cm diameter. A 5 kg of low-grade saprolitic nickel ore (1.92 Ni-12.97 Fe), some coke as reductant, and some limestone as flux were smelted in a DC-arc furnace for about one hour. The pouring temperature of hot metal and slag was 1400-1500 °C. The basicity of the quaternary slag of 0.8   and the stoichiometric carbon of 0.8 of the reductant resulted in an optimum smelting process of nickel ore in a DC-arc furnace, producing ferronickel with a Ni content of 14.59% with 92.26% recovery.

 

References

[1].        W. Lv, Y. Xin, R. Elliot, J. Song, X. Lv. and M. Barati, Drying kinetics of a Philippine nickel laterite ore by microwave heating, Mineral Processing and Extractive Metallurgy Review, 42 (2020), p. 46.


[2].        G. Li, H. Jia, J. Luo, Z. Peng, Y. Zhang, T. Jiang, Ferronickel preparation from nickeliferous laterite by rotary kiln-electric furnace process, [in] S. J. Ikhmayies, B. Li, J. S. Carpenter, J. Y. Hwang, S, N. Monteiro, J. Li, D. Firrao, M. Zhang, Z. Peng,  J. P. E. Diaz and C. Bai, eds.,  Characterization of Minerals, Metals, and Materials 2016, Springer, Cham., p. 143.


[3].        B. K. Tsang, and Y. Zhang, Energy challenges for a nickel laterite mining and smelting facility, [in] IFAC Workshop on Automation in the Mining, Mineral and Metal Industries, Japan, 2012, p.7.


[4].        Mudd, G. M., Global trends and environmental issues in nickel mining: Sulfides versus laterites, Ore Geology Reviews, 38, pp.9-26, 2010


[5].        M. G. King, Nickel laterite technology-Finally a new dawn, [in] Overview copper and nickel production, JOM (2005), p. 35.


[6].        E. N. Zevgolis, and K. A. Daskalakis, The nickel production methods from laterites and the Greek ferronickel production among them. Material Proceedings, 5 (2021), p. 1.


[7].        D. A. Quintero-Coronel, W. D. Guillin-Estrada, J. L. Echeverri-Roman, H. Maury, L. Corredor, J. A. Ruiz, B. S. Rueda, A. Gonzalez-Quiroga, Large- and particle-scale energy assessment of reduction roasting of nickel laterite ore for ferronickel production via the rotary kiln-electric furnace process, Thermal Science and Engineering Progress, 32(2022), 101331, p.1.


[8].        L. J. Erasmus, and L. J. Fourie, ESS smelting technology enabling FeNi smelting from limonite, [in] The Fourteenth International Ferroalloys Congress: Energy efficiency and environmental friendliness are the future of the global ferroalloys industry, Kiev, 2015, p. 210.


[9].        I. J. Koetze, Pilot plant production of ferronickel from nickel oxide ores and dusts in a DC arc furnace, Minerals Engineering, 15(2002), p. 1017.


[10].    A. Oxley, N. Barcza, Hydro-pyro integration in the processing of nickel laterites, Minerals Engineering, 54(2013), p.2.


[11].    J. Luo, G. Li, M. rao, Z. peng, G. Liang, T. jiang, X. Guo, Control of slag formation in the electric furnace smelting of ferronickel for an energy-saving production, Journal of Cleaner Production, 287(2021), 125082, p.1.


[12].    R. Andika, W. Astuti, Syafriadi, and F. Nurjaman, Effect of flux adiition and reductant type in smelting process of Indonesian limonite ore in electric arc furnace, IOP Conf. Series: Materials Science Engineering 478 (2019) 012007, p.1.


[13].    W. Wei, P. B. Samuelsson, P. G. Jonsson, R. Gyllenram, and B. Glaser, Energy consumption and greenhouse gas emissions of high-carbon ferrochrome production, JOM (2023).


[14].    J. Z. khoo, N. Haque, S. Bhattacharya, Process simulation and exergy analysis of two nickel laterite processing technologies, Int. J. Miner. Process. 161(2017), p. 83.


[15].    P. Liu, B. Li, S. C. P. Cheung, W. Wu, Material and energy flows in rotary kiln-electric furnace smelting of ferronickel alloy with energy saving, Applied Thermal Engineering, 109 (2016), p. 542.


[16].    R. T. jones, Reductive smelting for the recovery of nickel in a DC arc furnace, [in] Proceedings of EMC 2013, p. 1019.


[17].    E. Keskinkilic, Nickel laterite smelting process and some examples of recent possible modifications to the conventional route, Metals, 9 (2019) 974, p. 1.


[18].    R. T. Jones, Q. G. Reynolds, T. R. Curr, and D. Sager, Some myths about DC arc furnaces, The Journal of The Southern African Institute of Mining and Metallurgy, 111 (2011), p. 665.


[19].    R. T. Jones, DC arc furnaces-Past, present, and future, [in] P. J. Mackey, E. J. Grimsey, R. T. Jones, and G. A. Brooks, eds., Symposium on Pyrometallurgy in Honor of David G. C. Robertson, 2014, p. 129.


[20].    F. Nurjaman, F., W Astuti, F. Bahfie, & B. Suharno, Study of selective reduction in lateritic nickel ore: Saprolite versus limonite, Materials Today: Proceedings 44 (2021), p. 1488.


[21].    H. Wang, L. Shen, H. Bao, W. Zhang, X. Zhang, L. Luo and S. Song, Onvestigation of solid-state carbothermal reduction of fayalite with and without added metallic iron, JOM, 73 (2021), p. 703.


[22].    F. Nurjaman, Y. Sari, P. Manurung, A. S. Handoko, F. Bahfie, W. Astuti, B. Suharno, Study of binary, ternary, and quaternary basicity in reduction of saprolitic nickel ore, Transactions of the Indian Institue of Metals 74 (2021), p. 3249.


[23].    L. Xueming, Q. Jie, L. Meng, L. Mei, L. Xuewei, Viscosity of SiO2-MgO-Al2O3-FeO slag for nickel laterite smelting process. In proceedings: The Fourteenth International Ferroalloys Congress: Energy efficiency and environmental friendliness are the future of the global ferroalloy industry, 2015, Ukraine, pp. 561-566.


[24].    J. H. Park, Structure-property relationship of CaO-MgO-SiO2 slag: Quantitaive analysis of Raman spectra, Metallurgical and Materials Transactions B, 44B (2013), p. 938.


[25].    B. S. Terry, O. S. Chinyamakobvu, Assessment of the reaction of SiC powders with iron based alloys, Journal of Materials Science 28 (1993), p. 6779.


 


[26].    B. Abolpour, and R. Shamsoddini, Mechanism of reaction of silica and carbon for producing silicon carbide, Progress in Kinetics and Mechanism, 45 (2019), p. 1.

Published
2023/12/28
How to Cite
Nurjaman, F., Zul Hakim, H., Septiansyah, B., Arham, L. O., Handoko, A. S., Bahfie, F., Suherman, I., Haryadi, H., Suseno, T., Sari, Y., & Suharno, B. (2023). Smelting of low-grade saprolitic nickel ore in DC-Arc furnace. Journal of Mining and Metallurgy, Section B: Metallurgy, 59(3), 497-506. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/46173
Section
Original Scientific Paper