Synergistic effect of Pd+Rh on the microstructure and oxidation resistance of aluminide coatings

  • Maryana Zagula-Yavorska Rzeszow University of Technology, Department of Materials Science
Keywords: Pd Rh, aluminide coating, oxidation, kp value

Abstract


The Pd+Rh modified aluminide coatings were deposited on nickel and CMSX-4 nickel superalloy. The Pd layer (2.5 µm thick) and the subsequent Rh layer (0.5 µm thick) were electroplated on both nickel and CMSX-4. The aluminization of the substrates with Pd+Rh layers was carried out using the CVD method.  Two zones (outer and interdiffusing) were observed on both coatings. The β-NiAl phase doped in palladium was formed in the outer zones and β-NiAl phase doped with palladium and rhodium was formed at the boundary between the outer and interdiffusion zones of both coatings. The γ’-Ni3Al phase and μ-Co7Mo6 precipitates in the β-NiAl matrix were found in the interdiffusion zone on nickel and CMSX-4 superalloy respectively.  The simultaneous use of Pd and Rh in the aluminide coating slowed down their oxidation rate. Moreover, Pd+Rh co-doping is more efficient than Pd+Hf in reducing the oxidation rate of aluminide coating on CMSX-4 superalloy.

 

References

References


[1] M. Zagula-Yavorska, J. Romanowska, The effect of precious metals in the NiAl coating on the oxidation resistance of the Inconel 713 superalloy. Journal of Mining and Metallurgy Section B-Metallurgy 58 (2) B (2022), 299-310. https://doi.org/10.2298/JMMB220427011Z


[2] A. Kochmańska, P. Kochmański, Cyclic oxidation of slurry silicide-aluminide coatings formed on Ti-6Al-4V alloy. Surface Engineering 39 (6) (2023), 738 – 750. https://doi.org/ 10.1080/02670844.2023.2257856


[3] J. Romanowska, J. Morgiel, Ł. Kolek, P. Kwolek, M. Zagula-Yavorska, Effect of Pd and Hf co-doping of aluminide coatings on pure nickel and CMSX-4 nickel superalloy. Archives of Civil and Mechanical Engineering 18 (2018), 1421-1429. https://doi.org/10.1016/j.acme.2018.05.007.


[4] Y. Li, S. Li, C. Zhang, N. Xu, Z. Bao, Oxidation behavior and oxide transformation of a Pt-modified aluminide coating at moderate high temperature. Crystals 11(8) (2021), 972. https://doi.org/10.3390/cryst11080972


[5] V.K. Tolpygo, D. R. Clarke, Rumpling of CVD (Ni,Pt)Al diffusion coatings under intermediate temperature cycling. Surface and Coating Technology 203 (2009), 3278. https://doi.org/10.1016/j.surfcoat.2009.04.016


[6] E. Pauletti, A. Oliveira, The influence of Pd on the structure and oxidation performance of β-NiAl diffusion coatings. Materials research (2023), 26:e20220384. https://doi.org/10.1590/1980-5373-MR-2022-0384


[7] S. J. Hong, G. H. Hwang, W. K. Han, S. G. Kang, Cyclic oxidation of Pt/Pd-modified aluminide coating on a nickel-based superalloy at 1150 °C. Intermetallics 17 (2009), 381–386. https://doi.org/10.1016/j.intermet.2008.08.014


[8] L. Y. Qian, J. Wang, Y. S. Guo, H. Liu, Z. B. Bao, Influences of iridium and palladium on oxidation resistance of PtAl coating. Acta Metallurgica Sinica (English Letters) 34 (2021), 1120–1130. https://doi.org/10.1007/s40195-020-01185-y


[9] E. Felten, Use of platinum and rhodium to improve oxide adherence on Ni-8Cr-6Al alloys. Oxidation of Metals 10 (1976), 23–28. https://doi.org/10.1007/BF00611696


[10] S. Li, M. Xu, C. Zhang, Y. Niu, Z. Bao, S. Zhu, et al., Co-doping effect of Hf and Y on improving cyclic oxidation behavior of (Ni,Pt)Al coating at 1150 ºC. Corrosion Science 178 (2021), 109093. https://doi.org/10.1016/j.corsci.2020.109093


[11] R. Swadźba, M. Hetmańczyk, M. Sozańska, B. Witala, L. Swadźba, Structure and cyclic oxidation resistance of Pt, Pt/Pd-modified and simple aluminide coatings on CMSX-4 superalloy. Surface and Coating Technology 206 (2011), 538-1544. https://doi.org/10.1016/j.surfcoat.2011.06.042


[12] R. Swadźba, M. Hetmańczyk, J. Wiedermann, L. Swadźba, G. Moskal, B. Witala et al., Microstructure degradation of simple Pt, Pt+Pd-modified aluminide coatings on CMSX-4 superalloy under cyclic oxidation conditions. Surface and Coating Technology 215 (2013), 16-23. https://doi:10.1016/j.surfcoat.2012.06.093


[13] M. Zagula-Yavorska, M. Wierzbińska, J. Sieniawski, Rhodium and hafnium influence on the microstructure, phase composition and oxidation resistance of aluminide coatings. Metals 7 (2017), 1-11.  https://doi.org/10.3390/met7120548


[14] Y. F. Yang, C. Y. Jiang, H. R. Yao, Z. B. Bao, S. L. Zhu, F. H. Wang, Preparation and enhanced oxidation performance of a Hf-doped single-phase Pt-modified aluminide coating. Corrosion Science 113 (2016), 17-25. https://doi.org/10.1016/j.corsci.2016.09.014.


[15] Y. F. Yang, P. Ren, Z. B. Bao, S. L. Zhu, F. H. Wang, W. Li,  Microstructure and cyclic oxidation of a Hf-doped (Ni,Pt)Al coating for single-crystal superalloys. Journal of Materials Science 55 (2020), 11687–11700. https://doi.org/10.1007/s10853-020-04782-5


[16] M. Zagula-Yavorska, J. Morgiel, J. Romanowska, J. Sieniawski, Microstructure and oxidation behaviour investigation of rhodium modified aluminide coating deposited on CMSX 4 superalloy. Journal of Microscopy 261 (2016), 320-325. https:// doi:10.1111/jmi.12344.


[17] M. Zagula-Yavorska, J. Romanowska, M. Pytel, J. Sieniawski, The microstructure and oxidation resistance of the aluminide coatings deposited by the CVD method on pure nickel and hafnium-doped nickel superalloys. Archives of Civil and Mechanical Engineering 15 (2015), 862-872. https://doi.org/10.1016/j.acme.2015.03.006


[18] B. Karpe, K. Prijatelj, M. Bizjak, T. Kosec, Corrosion properties of aluminized 16Mo3 steel. Journal of Mining and Metallurgy Section B-Metallurgy 59 (1) (2023), 91-100. https://doi.org/ 10.2298/JMMB220927008K

[19] H. Okamoto, Al-Ni (aluminum-nickel).  Journal of Phase Equilibria and Diffusion 25 (2004), 394. https://doi.org/10.1007/s11669-004-0163-0


[20] Y. Zhao, S. Cao, L. Zeng, et al.,  Intermetallics in Ni–Al Binary Alloys: Liquid Structural Origin. Metallurgical and Materials Transactions A 54 (2023), 646–657. https://doi.org/10.1007/s11661-022-06910-z


[21] P. Sankanit, V. Uthaisangsuk, P. Pandee, Tensile properties of hypoeutectic Al-Ni alloys: Experiments and FE simulations. Journal of Alloys and Compounds 889 (2021), 161664. https://doi.org/10.1016/j.jallcom.2021.161664


[22] V.V. Kulyk, О.P. Ostash, V.V. Vira, Influence of the elevated contents of silicon and manganese on the operating characteristics of high-strength wheel steel. Materials Science 55 (2019), 143–151. https://doi.org/10.1007/s11003-019-00281-4


[23] T. Davey, N. D. Tran, A. Saengdeejing, Y. Chen, First-principles-only CALPHAD phase diagram of the solid aluminium-nickel (Al-Ni) system. Calphad 71 (2020), 102008. https://doi.org/10.1016/j.calphad.2020.102008


[24] W. Shao, J. M. Guevara-Vela, A. Fernández-Caballero, S. Liu, J. Lorca, Accurate prediction of the solid-state region of the Ni-Al phase diagram including configurational and vibrational entropy and magnetic effects. Acta Materialia 253 (2023), 118962. https://doi.org/10.1016/j.actamat.2023.118962


[25] J. Romanowska, J. Morgiel, M. Zagula-Yavorska, J. Sieniawski, Nanoparticles in hafnium-doped aluminide coatings. Materials Letters 145 (2015), 162-166. https:// doi:10.1016/j.matlet.2015.01.089


[26] M. Zagula-Yavorska, M. Pytel, J. Romanowska, J. Sieniawski, The effect of zirconium addition on the oxidation resistance of aluminide coatings. Journal of Materials Engineering and Performance 24 (2015), 1614-1625. https://doi:10.1007/s11665-015-1421-5


[27] J. Romanowska, E. Dryzek, J. Morgiel, K. Siemek, Ł. Kolek, M. Zagula-Yavorska, Microstructure and positron lifetimes of zirconium modified aluminide coatings. Archives of Civil and  Mechanical Engineering 18 (2018), 1150-1155. https://doi:10.1016/j.acme.2018.03.002.


[28] R. Pillai, A. Chyrkin, D. Grüner, W. Nowak, N. Zheng, A. Kliewe, et al., Carbides in an aluminised single crystal superalloy: Tracing the source of carbon. Surface and Coating Technology 288 (2016), 15–24. https://doi:10.1016/j.surfcoat.2015.12.066


[29] P. Kiruthika, S. K. Makineni, C. Srivastava, K. Chattopadhyay, A. Paul, Growth mechanism of the interdiffusion zone between platinum modified bond coats and single crystal superalloys. Acta Materialia 105 (2016), 438-448. https://doi:10.1016/j.actamat.2015.12.014


[30] H. Meininger, T. Gödeke, M. Ellner, Structural and phase equilibria investigations in the transition metal-rich part of the ternary system Ni–Pd–Al. International Journal of Materials Research 90 (1999), 207-215.


[31] M. Bai Fabrication and characterization of thermal barrier coatings. Doctor Thesis. University of Manchester, 182.


[32] P. Lamesle, P. Steinmetz, J. Steinmetz, Palladium-modified aluminide coatings: mechanisms of formation. Journal of Electrochemical Society 142 (1995), 497-505. https://doi:10.1149/1.2044085


[33] Q. Fan, H. Yu, T. Wang, Z. Wu, Y. Liu, Preparation and isothermal oxidation behavior of Zr-doped, Pt-modified aluminide coating prepared by a hybrid process. Coatings 8 (2018), 1–12. https://doi:10.3390/coatings8010001

Published
2023/12/28
How to Cite
Zagula-Yavorska, M. (2023). Synergistic effect of Pd+Rh on the microstructure and oxidation resistance of aluminide coatings. Journal of Mining and Metallurgy, Section B: Metallurgy, 59(3), 465-476. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/47178
Section
Original Scientific Paper