Thermal upgrading of manganese ores prior to smelting

  • Said Eray Sivas University of Science and Technology
Keywords: manganese ore, thermal upgrading, calcination, reduction

Abstract


Ferromanganese smelting in electric arc furnaces is an energy-intensive process with corresponding CO2 emissions and environmental impacts. Upgrading the furnace charge can improve process efficiency and decrease electricity consumption. An oxide manganese ore, consisting mainly of pyrolusite, calcite and goethite, was thermally upgraded by calcination and solid-state reduction. During calcination of the ore at 900-1100°C, carbonates and hydroxides were decomposed and a considerable amount of oxygen was removed. The manganese content of the run-of-mine ore was increased from 39.86% to 47% after calcination. Carbothermic reduction of the ore at 1250°C resulted in almost all of the iron oxide and some of the manganese oxide passing into the metallic form. The results showed that a significant part of the endothermic reactions during the solid-state treatment of the ore can be carried out with low-cost fossil fuels. This leads to enrichment of the electric arc furnace charge, lower electricity consumption in the furnace, lower overall processing costs and a more efficient smelting process.

 

References

1         S. Lohiya, Manganese Ore in Indian Minerals Yearbook 2019 Vol. III (Mineral Reviews), Indian Bureau of Mines, Nagpur, 2019, p. 1-27. https://ibm.gov.in/writereaddata/files/05042022165839Manganese%20Ore_2019.pdf


2         M. Tangstad, S.E. Olsen, The Ferromanganese Process - Material and Energy Balance, Proc. Seventh International Ferroalloys Congress; INFACON VII, Trondheim, Norway, 1995, p. 621. https://www.pyrometallurgy.co.za/InfaconVII/621-Tangstad.pdf


3         E. Keskinkilic, Nickel Laterite Smelting Processes and Some Examples of Recent Possible Modifications to the Conventional Route, Metals, 9 (9) (2019) 974. https://doi.org/10.3390/met9090974


4         M.J. Pereira, M.M.F. Lima, R.M.F. Lima, Calcination and characterisation studies of a Brazilian manganese ore tailing, International Journal of Mineral Processing, 131 (2014) 26-30. https://doi.org/10.1016/j.minpro.2014.08.003


5         S. Pournaderi, E. Keskinkılıç, A. Geveci, Y.A. Topkaya, Reducibility of nickeliferous limonitic laterite ore from Central Anatolia, Canadian Metallurgical Quarterly 53 (1) (2014) 26-37. https://doi.org/10.1179/1879139513Y.0000000099


6         Y. Gordon, J. Nell, Y. Yaroshenko, Manganese Ore Thermal Treatment Prior to Smelting, Proc. VII All-Russian Scientific and Practical Conference of Students, Graduate Students and Young Scientists (TIM’2018), Ekaterinburg, Russia, 2018, p. 71-86. https://doi.org/10.18502/keg.v3i5.2656


7         R.K. Amankwah, C.A. Pickles, Microwave calcination and sintering of manganese carbonate ore, Canadian Metallurgical Quarterly, 44 (2) (2005) 239-247. https://doi.org/10.1179/cmq.2005.44.2.239


8         V. Singh, T. Chakraborty, S.K. Tripathy, A Review of Low Grade Manganese Ore Upgradation Processes, Mineral Processing and Extractive Metallurgy Review, 41 (6) (2020) 417-438. https://doi.org/10.1080/08827508.2019.1634567


9         A. Cheraghi, H. Becker, H. Eftekhari, H. Yoozbashizadeh, J. Safarian, Characterization and calcination behavior of a low-grade manganese ore, Materials Today Communications, 25 (2020) 101382. https://doi.org/10.1016/j.mtcomm.2020.101382


10       L. Yi, Z. Huang, T. Jiang, P. Zhao, R. Zhong, Z. Liang, Carbothermic Reduction of Ferruginous Manganese Ore for Mn/Fe Beneficiation: Morphology Evolution and Separation Characteristic, Minerals 7 (9) (2017) 167. https://doi.org/10.3390/min7090167


11       E. Keskinkilic, S. Pournaderi, A. Geveci, Y.A. Topkaya, Calcination characteristics of laterite ores from the central region of Anatolia. The Journal of The Southern African Institute of Mining and Metallurgy, 112 (10) (2012) 877-882. https://www.saimm.co.za/Journal/v112n10p877.pdf


12       N.J. Welham, Activation of the carbothermic reduction of manganese ore. International Journal of Mineral Processing, 67 (1-4) (2002) 187-198. https://doi.org/10.1016/S0301-7516(02)00045-5


13       E. R. Stobbe, B.A. de Boer, J.W. Geus, The reduction and oxidation behaviour of manganese oxides, Catalysis Today, 47 (1-4) (1999) 161-167. https://doi.org/10.1016/S0920-5861(98)00296-X


14       A. Geveci, H.  Keçeli, Y.  Topkaya, N. Sevinç, Calcination of the Turkish manganese ore from Denizli-Tavas region, Physicochemical Problems of Mineral Processing, 32 (1) (1998) 203-213. https://www.journalssystem.com/ppmp/pdf-79679-15732?filename=Calcination%20of%20the.pdf


15       B. Sorensen, S. Gaal, E. Ringdalen, M. Tangstad, R. Kononov, O. Ostrovski, Phase compositions of manganese ores and their change in the process of calcination. International Journal of Mineral Processing, 94 (3-4) (2010) 101-110. https://doi.org/10.1016/j.minpro.2010.01.001


16       Y. Gao, M. Olivas-Martinez, H.Y. Sohn, H.G. Kim, C.W. Kim, Upgrading of Low-Grade Manganese Ore by Selective Reduction of Iron Oxide and Magnetic Separation. Metallurgical and Materials Transactions B, 43 (2012) 1465-1475. https://doi.org/10.1007/s11663-012-9731-6


17       M. Yastrebof, O. Ostrovski, S. Ganguly, Carbothermic Reduction of Manganese from Manganese Ore and Ferromanganese Slag, Proc. INFACON 8: 8th international Ferroalloys Congress, Beijing, China, 1998, p. 263-270. https://www.pyrometallurgy.co.za/InfaconVIII/263-Yastreboff.pdf


18       M. Yastreboff, O. Ostrovski, S. Ganguly, Effect of Gas Composition on the Carbothermic Reduction of Manganese Oxide. ISIJ International, 43 (2) (2003) 161-165. https://doi.org/10.2355/isijinternational.43.161.


19       T. Skjervheim, S. Olsen, The Rate and Mechansim for Reduction of Manganese Oxide from Silicate Slags, Proc. INFACON 7: International Ferroalloys Congress, Trondheim, Norway, 1995, p. 631-639. https://www.pyro.co.za/InfaconVII/631-Skjervheim.pdf


20       C. Akıl, A. Geveci, Optimization of Conditions to Produce Manganese and Iron Carbides from Denizli-Tavas Manganese Ore by Solid State Reduction, Turkish Journal of Engineering and Environmental Sciences, 32 (3) (2008)125-131. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8e17939e827e1c598f70765e0e84601d1f8a9590


21       M. Tangstad, S. Olsen, Phase Relations in Ferromanganese Slags during Melting and Reduciton, Proc. The 5th International Conference on Molten Slags, Fluxes, and Salts '97, Sydney, Australia, 1997, p. 549-555. https://www.pyrometallurgy.co.za/MoltenSlags1997/549-Tangstad.pdf


22       R. Kononov, O. Ostrovski, S. Ganguly, Carbothermal Solid State Reduction of Manganese Ores: 1. Manganese Ore Characterisation, ISIJ International, 49 (8) (2009) 1099-1106. https://doi.org/10.2355/isijinternational.49.1099.


23       İ.S. Çardaklı, N. Sevinç, T. Öztürk, Production of high carbon ferromanganese from a manganese ore located in Erzincan, Turkish Journal of Engineering and Environmental Sciences, 35 (2011) 31-38.


24       O.I. Ostrovski, T.J.M. Webb, Reduction of Siliceous ManganeseOre by Graphite. ISIJ International, 35 (11) (1995) 1331-1339. https://doi.org/10.2355/isijinternational.35.1331


25        I. Barin, Thermochemical Data of Pure Substances, Wiley, 1995. https://doi.org/10.1002/9783527619825

Published
2023/12/28
How to Cite
Eray, S. (2023). Thermal upgrading of manganese ores prior to smelting. Journal of Mining and Metallurgy, Section B: Metallurgy, 59(3), 421-430. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/47367
Section
Original Scientific Paper