Effect of regular thicknesses on the microstructural and quantitative analysis for a hypo-eutectic ductile iron alloyed with Ni and V

Keywords: Ductile iron;, thickness;, microstructure;, cooling rate;, quantitative analysis;, nodular characteristics

Abstract


Ductile iron contains free graphite nodules inside of the metallic matrix, which generally consists of ferrite and pearlite in the as-cast condition. The cooling rate has a great influence on the size, shape, and quantity of the microconstituents of the metallic matrix and the graphite nodules and, therefore, on the mechanical properties. In this investigation, the effect of the cooling rate on the metallic matrix and the nodular characteristics of a ductile iron alloyed with low concentrations of Ni and V was studied. The ductile iron was obtained using the sandwich technique with ladle inoculation. Six plates of different thicknesses from 4.3 mm to 25.4 mm were fabricated in a sand mold using a cooling time of 30 minutes. The microstructural characterization was performed by optical microscopy (OM) and scanning electron microscopy (SEM). The quantitative analysis of the graphite nodules and the microconstituents of the metallic matrix was carried out with the Image J software. The mechanical characterization was carried out by the hardness test on the Rockwell C scale. The results show that the decrease in thickness improves the nodular characteristics; In this case, the plate thickness of 4.3 mm obtained the highest nodule count of 414 Nod/mm2, the smallest nodule size (15.30 µm), a space between particles of 18.23 µm, sphericity close to 0 .96 and nodularity of 96.21%. In addition, the highest volume fraction of pearlite (33.7%) and carbides (4.5%) was obtained and consequently the highest hardness (31.56 HRC).

Author Biographies

Eduardo Colin-García, IPN

Instituto Politécnico Nacional – ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, Ciudad de México, México

Ricardo G. Sánchez-Alvarado , IPN

Instituto Politécnico Nacional – ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, Ciudad de México, México

Alejandro Cruz-Ramírez , IPN

Instituto Politécnico Nacional – UPIIH, Departamento de Ciencias Básicas, Hidalgo, México.

Miguel A. Suarez-Rosales, UAM

Universidad Autónoma Metropolitana – UAM-Azcapotzalco, Departamento de Materiales, Ciudad de México, México

Leobardo Portuguez-Pardo , IPN

Instituto Politécnico Nacional – ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, Ciudad de México, México

Juan C. Jiménez-Lugos , IPN

Instituto Politécnico Nacional – ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, Ciudad de México, México

References

1. T.J. Marrow, H. Çetinel, Short fatigue cracks in austempered ductile iron (ADI), Fatigue & Fracture of Engineering Materials & Structures, 23 (2000) 425-434.
https://doi.org/10.1046/j.1460-2695.2000.00295.x
2. M.A. Neri, C. Carreño, effect of copper content on the microstructure and mechanical properties of a modified nodular iron, Materials Characterization, 51 (4) (2003) 219-224.
https://doi.org/10.1016/j.matchar.2003.09.001
3. M. Persyk, A.W. Kochański, Prediction of ductile cast iron quality by artificial neural networks, Journal of Materials Research and Technology, 109 (2001) 305-307.
https://doi.org/10.1016/S0924-0136(00)00822-0
4. E. Fraś, M. Górny, H. Lopez, Thin wall ductile iron castings as substitutes for aluminium alloy casting, Archives of Metallurgy and Materials, 59 (2) (2014) 459-465.
https://doi.org/10.2478/amm-2014-0076
5. G. Rivera, R. Boeri, J. Sikora, Influence of the solidification microstructure on the mechanical properties of ductile iron, International Journal of Cast Metal Research, 11 (6) (1999) 533-538.
https://doi.org/10.1080/13640461.1999.11819329
6. J.W. Soedarsono, T.P. Soemardi, B. Suharno, R.D. Sulamet-Ariobimo, Effects of carbon equivalent on the microstructures of thin wall ductile iron, Journal of Materials Science and Engineering, 5 (2011) 266-270
7. M. Ghoroghi, N. Varahram, Y. Perseh, Investigation into microstructure and mechanical properties of heavy section nickel alloyed austempered ductile iron in accordance with austempering parameters, Material Design & Processing Communications, 3 (4) (2021) 5-11.
https://doi.org/10.1002/mdp2.220
8. J. Lacaze, S. Armendariz, P. Larrañaga, I. Asenjo, J. Sertucha, R. Suárez, Effect of carbon equivalent on graphite formation in heavy-section ductile iron parts, Materials Science Forum, 636-637 (2010) 523–530.
https://doi.org/10.4028/www.scientific.net/MSF.636-637.523
9. R.A. Martínez, R.E. Boeri, J.A. Sikora, Application of ADI in high strength thin wall automotive parts, 2002 World Conference on ADI, September 26-27, Kentucky, USA, 2002, 143-148.
10. B.I. Imasogie, U. Wendt, Characterization of graphite particle shape in spheroidal graphite iron using a computer-based image analyzer, Journal of Minerals & Materials Characterization & Engineering, 3 (1) (2004) 1-12.
https://doi.org/10.4236/jmmce.2004.31001
11. K. Davut, B. Çetin, E. Arslan, H. Meco, C. Yazganarikan, Nodularity and Nodule Count Analysis of Austempered Ductile Iron Castings by Digital Image Processing, 18th International Metallurgy and Materials Congress, 29 sept-01 oct, Istambul, Turkey, 2016, 497-500.
12. G. Das, Image analysis in quantitative metallography, Materials Characterization Techniques-Principles and Applications, 83(1007) (1999) 135-150.
13. C.A. Paredes-Orta, F. Manriquez-Guerrero, J. Torres-González, F. Castañeda, and I. R. Terol-Villalobos, Wear characterization of nodular cast iron based on clusters of nodules, Advanced Materials Research, 976 (2014) 184–188.
https://doi.org/10.4028/www.scientific.net/AMR.976.184
14. E. Colin García, A. Cruz Ramírez, G. Reyes Castellanos, J. Téllez Ramírez, A. Magaña Hernández, Microstructural and mechanical assessment of camshafts produced by ductile cast iron low alloyed with vanadium, Metals, 11 (146) (2021) 1–18.
https://doi.org/10.3390/met11010146
15. M. Górny, M. Kawalec, B. Gracz, M. Tupaj, Influence of cooling rate on microstructure formation of Si–Mo ductile iron castings, Metals, 11 (1634) (2021) 1-15.
https://doi.org/10.3390/met11101634
16. H. Ma, R.J. Bowers, D.O. Northwood, X. Sun, P.J. Bauerle, Residual stress and retained austenite in induction hardened ductile iron camshafts, WIT Transactions on Engineering Sciences, 76 (2012) 115–127.
https://doi.org/10.2495/TD120101
17. I. Riposan, D. Anca, I. Stan, M. Chisamera, S. Stan, Graphite Nodularity Evaluation in High-Si Ductile Cast Irons, Materials, 15 (7685) (2022) 1-21.
https://doi.org/10.3390/ma15217685
18. A.D. Sosa, M.D. Echeverría, O.J. Moncada, N. Míngolo, J A. Sikora, Influence of nodule count on residual stresses and distortion in thin wall ductile iron plates of different matrices, Journal of Materials Processing Technology, 209 (15-16) (2009) 5545–5551.
https://doi.org/10.1016/j.jmatprotec.2009.05.010
19. E. Colin-García, A. Cruz-Ramírez, G. Reyes-Castellanos, J.A. Romero-Serrano, R.G. Sánchez-Alvarado, M. Hernández-Chávez, Influence of nickel addition and casting modulus on the properties of hypo-eutectic ductile cast iron, Journal of Mining and Metallurgy, Section B: Metallurgy, 55 (2) (2019) 283–293.
https://doi.org/10.2298/JMMB181012023C
20. H. Sazegaran, F. Teimoori, H. Rastegarian, and A. M. Naserian-Nik, Effects of aluminum and copper on the graphite morphology, microstructure, and compressive properties of ductile iron, Journal of Mining and Metallurgy, Section B: Metallurgy, 27 (1) (2021) 145–154.
https://doi.org/10.2298/JMMB191224006S
21. C. Chuang, D. Singh, P. Kenesei, J. Almer, J. Hryn, R. Huff, 3D quantitative analysis of graphite morphology in high strength cast iron by high-energy X-ray tomography, Scripta Materialia, 106 (2015) 5–8.
https://doi.org/10.1016/j.scriptamat.2015.03.017
22. L. A. Morales-Hernández, I.R. Terol-Villalobos, A. Domínguez-González, F. Manríquez-Guerrero, G. Herrera-Ruiz, Spatial distribution and spheroidicity characterization of graphite nodules based on morphological tools, 210 (2) (2010) 335–342.
https://doi.org/10.1016/j.jmatprotec.2009.09.020
23. Foseco Ferrous Foundryman´s handbook (J.R. Brown), Butterworth Heinemann, Oxford, 2000, 32-34.
24. Ch.F. Han, Y.F. Sun, Y. Wu, Y.H. Ma, Effects of Vanadium and Austempering Temperature on Microstructure and Properties of CADI, Metallography, Microstructure, and Analysis, 4 (2015) 135–145.
https://doi.org/10.1007/s13632-015-0197-1
25. R. E. Ruxanda, D.M. Stefanescu, T. S. Piwonka, Microstructure Characterization of Ductile Thin-Wall Iron Castings, AFS Transaction, 110 (2002) 1-17.
26. S.K. Putatunda, Influence of austempering temperature on microstructure and fracture toughness of a high-carbon, high-silicon and high-manganese cast steel, Materials & Design, 24 (6) (2003) 435–443.
https://doi.org/10.1016/S0261-3069(03)00090-6
27. L. Rao, W.W Tao, S.J. Wang, M.P. Geng, G.X. Cheng, Influence of the composition ratio of manganese and copper on the mechanical properties and the machining performance of ductile iron, Indian Journal of Engineering and Materials Sciences, 21 (5) (2014) 573-579.
28. S. Dhanasekaran, A. Vadiraj, G. Balachandran, M. Kamaraj, Mechanical behaviour of an austempered ductile iron, Transactions of The Indian Institute of Metals, 63 (2010) 779-785.
https://doi.org/10.1007/s12666-010-0119-5
29. A.S. Darmawan P.I. Purboputro, A. Yulianto, A.D. Anggono, W. Wijianto, M. Masyrukan, R.D. Setiawan, N.D. Kartika, Effect of magnesium on the strength, stiffness and toughness of nodular cast iron, Materials Science Forum, 991 (2020) 17–23.
https://doi.org/10.4028/www.scientific.net/MSF.991.17
30. G.M. Goodrich, Cast iron microstructure anomalies and their causes, AFS Transactions, 105 (1997) 669–683.
31. N. Fatahalla, H. Abd Al Hakim, A. Abo-El-Ezz, M. Mohamed, Effect of the percentage carbon equivalent on the nodule characteristics, density and modulus of elasticity of ductile cast iron Journal of Materials Science, 31 (18) (1996) 4933–4937.
https://doi.org/10.1007/BF00355883
32. E. Moumeni, C.C. Tutum, N.S. Tiedje, J. H. Hattel, Analysis of nucleation modelling in ductile cast iron, IOP Conference Series: Materials Science and Engineering, January 01, Aachen, 2011. 1-7.
https://doi.org/10.1088/1757-899X/27/1/012062
33. D.I. Pedro, R.C. Dommarco, Rolling contact fatigue resistance of Carbidic Austempered Ductile Iron (CADI), Wear, 418–419 (2018) 94–101.
https://doi.org/10.1016/j.wear.2018.11.005
34. A.M. Herrera Navarro, H. Jiménez Hernández, H. Peregrina-Barreto, F. Manríquez Guerrero, I.R. Terol Villalobos, Characterization of the roundness degree of graphite nodules in ductile iron A new discrete measure independent to resolution, Superficies y vacío, 26 (2) (2013) 58-63.
35. Mr. Bahubali, B. Sangame, M. Vasudev, D. Shinde, The Effect of inoculation on microstructure and mechanical properties of ductile iron, Journal of Mechanical and Civil Engineering, 5 (6) (2013) 17-23.
36. R. Lora, A. Diószegi, L. Elmquist, Solidification study of gray cast iron in a resistance furnace, Key Engineering Materials, 547 (2011) 108–113.
https://doi.org/10.4028/www.scientific.net/KEM.457.108
37. N.G. Kok Long, H. Sasaki, H. Kimura, T. Yoshikawa, M. Maeda, Heterogeneous nucleation of graphite on rare earth compounds during solidification of cast iron, ISIJ International, 58 (1) (2018) 123–131.
https://doi.org/10.2355/isijinternational.ISIJINT-2017-398
38. A. de Albuquerque Vicente, J.R. Sartori Moreno, T.F. de Abreu Santos, D.C. Romano Espinosa, J.A. Soares Tenório, Nucleation and growth of graphite particles in ductile cast iron, Journal of Alloys and Compounds, 775 (2019) 1230–1234.
https://doi.org/10.1016/j.jallcom.2018.10.136
39. M. Górny, E. Tyrała, Effect of cooling rate on microstructure and mechanical properties of thin-walled ductile iron castings, Journal of Materials Engineering and Performance, 22 (2013) 300–305.
https://doi.org/10.1007/s11665-012-0233-0
40. R. Salazar, M. Herrera-Trejo, M. Castro, J. Méndez, J. Torres, M. Méndez, Effect of Nodule Count and Cooling Rate on As-Cast Matrix of a Cu-Mo Spheroidal Graphite, 8 (1999) 325-329.
https://doi.org/10.1361/105994999770346873
41. A. Sadjghzadeh Benam, Effect of alloying elements on austempered ductile iron (ADI) properties and its process: Review, China Foundry, 12, (1) (2015) 54–70.
42. P. Sellamuthu, D.G. Harris Samuel, D. Dinakaran, V.P. Premkumar, Z. Li, S. Seetharaman, Effect of nickel content and austempering temperature on microstructure and mechanical properties of austempered ductile iron (ADI), IOP Conference Series: Materials Science and Engineering, February 24-26, Bangkok, Thailand. 2018, 1–7.
https://doi.org/10.1088/1757-899X/383/1/012069
43. K.M. Pedersen N. Tiedje, Solidification of Hypereutectic thin wall ductile cast iron, Materials Science Forum, 508 (2006), 63–68.
https://doi.org/10.4028/www.scientific.net/MSF.508.63
44. S.C. Murcia, E.A. Ossa, D. J. Celentano, Nodule evolution of ductile cast iron during solidification, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 45 (2014) 707–718.
https://doi.org/10.1007/s11663-013-9979-5
45. M. Bjerre, N.S. Tiedje, J. Thorborg, J.H. Hattel, Modelling the solidification of ductile cast iron parts with varying wall thicknesses, IOP Conference Series: Materials Science and Engineering June 21-26, Hyogo, Japan, 2015, 1-8.
https://doi.org/10.1088/1757-899X/84/1/012038
46. O.A. Tchaykovsky, O.V. Klok, Ductile cast iron induction Re-Melting, International Journal of Engineering Research & Technology (IJERT), 4 (7) (2015) 836-841.
47. Vaško, Evaluation of Shape of Graphite Particles in Cast Irons by a Shape Factor, Materials Today: Proceedings, 3 (4) (2016) 1199-1204.
https://doi.org/10.1016/j.matpr.2016.03.006
48. R.E.L. Ruxunda, D.M. Stefanescu, T.S. Piwonka, Quantification of the solidification microstructure of ductile iron through Image analysis, Proc. Of the International Conference on the Sicnece of Casting and Solidification, January, Brasov, Romania, 2001, 361-368.
49. J.M. Bojarro, R.A. Martínez, R.E. Boeri, J.A. Sikora, Shape and count of free graphite particles in thin wall ductile iron castings, ISIJ International, 42 (3) (2002) 257-263.
https://doi.org/10.2355/isijinternational.42.257
50. S. Toraman, T. Cosgun, B. Alkan, B. Cetin, O. Akyildiz, Assessing the volume fractions of the phases, nodularity and nodule count of spheroidal graphite cast iron using Imagej software, Mugla Journal of Science and Technology, 5 (1) (2019) 137–142.
https://doi.org/10.22531/muglajsci.521128
51. P.H. Agarwal, M. Mamta, P. Patel, Effect of magnesium as spherodizer on graphite morphology in ductile cast iron, International Journal of Advance Engineering and Research Development, 3 (2) (2016) 60-63.
52. M. Holtzer, M. Górny, and R. Dańko, Microstructure and Properties of Ductile Iron and Compacted Graphite Iron Castings, Springer, Heidelberg, New York, Dordrecht, London, 2015, 109-121
53. Jh. Liu, Js. Yan, Xb. Zhao, Bg. Fu, Ht. Xue, Gx. Zhang, Ph. Yang, Precipitation and evolution of nodular graphite during solidification process of ductile iron, China Foundry, 17 (4) (2020) 260–271.
https://doi.org/10.1007/s41230-020-0042-2
54. M. Riebisch, B. Pustal, and A. Bührig-Polaczek, Influence of Carbide-Promoting Elements on the Microstructure of High-Silicon Ductile Iron, International Journal of Metalcasting, (14) (2020) 1152–1161.
https://doi.org/10.1007/s40962-020-00442-1
55. G.F. Vander Voort, Metallography Principles and practice, ASM International, USA, 1999, 411-414.
56. E. Ghassemali, J.C. Hernando, D.M. Stefanescu, A. Doiszegi, A.E.W. Jarfors, J. Dluhos, M. Petrenec, Revisiting the graphite nodule in ductile iron, Scripta Materialia, 161 (2019) 66–69.
https://doi.org/10.1016/j.scriptamat.2018.10.018
57. K.L. Hayrynen, The Production of Austempered Ductile Iron (ADI), 2002 World Conference on ADI, September 26-27, Kentucky, USA, 2002, 1-6.
58. W. C. Johnson, B. V Kovacs, The Effect of Additives on the Eutectoid Transformation of Ductile Iron, Metallurgical Transactions A, 9 (1976) 219-229.
https://doi.org/10.1007/BF02646704
59. J. Lacaze, J. Sertucha, and L. Magnusson Åberg, Microstructure of as-cast ferritic-pearlitic nodular cast irons, ISIJ International, 56 (9) (2016) 1606–1615.
https://doi.org/10.2355/isijinternational.ISIJINT-2016-108
60. W. Arshad, A. Mehmood, M.F. Hashmi, O.U. Rauf, The effect of increasing silicon on mechanical properties of ductile iron, Journal of Physics: Conference Series, 1082 (2018) 1-6.
https://doi.org/10.1088/1742-6596/1082/1/012059
61. R. A. Gonzaga, Influence of ferrite and pearlite content on mechanical properties of ductile cast irons, Materials Science and Engineering: A, 567 (2013) 1–8.
https://doi.org/10.1016/j.msea.2012.12.089
62. A. Javaid, J. Thomson, M. Sahoo, K.G. Davis, Factors affecting the formation of carbides in thin wall DI castings, AFS transactions, 74 (1999) 441-456.
63. M. Caldera, G.L. Rivera, R.E. Boeri, J.A. Sikora, Precipitation and dissolution of carbides in low alloy ductile iron plates of varied thickness, Materials Science and Technology, 21 (10) (2005) 1187–1191.
https://doi.org/10.1179/174328405X62242
64. M. Rezvani, R. A. Harding, J. Campbell, The effect of vanadium in as-cast ductile iron, International Journal of Cast Metals Research, 10 (1) (1997) 1–15.
https://doi.org/10.1080/13640461.1997.11819213
65. I. Minkoff, Alloy cast iron systems, The Physical metallurgy of cast iron, Jhon Wiley and Sons Ltd., Norwich, England, 1983, 185-188.
66. A. Cruz Ramírez, E. Colin García, J.F. Chávez Alcalá, J. Téllez Ramírez, A. Magaña Hernández, Evaluation of CADI Low Alloyed with Chromium for Camshafts Application, Metals, 12 (249) (2022) 1-24.
https://doi.org/10.3390/met12020249
67. W.D. Callister Jr, Materials science and engineering a Introduction, Jhon Wiley and Sons Ltd., USA, 2007, 291.
68. E. Guzel, C. Yuksel, Y. Bayrak, O. Sen, and A. Ekerim, Effect of section thickness on the microstructure and hardness of ductile cast iron, Metallography and Hardness Measurements, 56 (4) (2014) 285–288.
https://doi.org/10.3139/120.110558
Published
2024/08/26
How to Cite
Colin-García, E., Sánchez-Alvarado , R. G., Cruz-Ramírez , A., Suarez-Rosales, M. A., Portuguez-Pardo , L., & Jiménez-Lugos , J. C. (2024). Effect of regular thicknesses on the microstructural and quantitative analysis for a hypo-eutectic ductile iron alloyed with Ni and V. Journal of Mining and Metallurgy, Section B: Metallurgy, 60(1), 15-31. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/47641
Section
Original Scientific Paper