Enhancing Microstructure, Grain Refinement, and Wear Properties of Cast A356-TiB2 Composite through Improved Sequence of ECAP and Heat Treatment Processes

  • Anasyida Seman Universiti Sains Malaysia
  • Muhammad Syukron Universitas Pembangunan Nasional “Veteran” Yogyakarta
  • Zuhailawati Hussain Universiti Sains Malaysia
  • Muhammad Hafiz Hassan Universiti Sains Malaysia
  • Brij Kumar Dhindaw Indian Institute of Technology Kharagpur
  • Taiwo Ebenezer Abioye Federal University of Technology Akure
  • Siti Aminah Zakaria Universiti Sains Malaysia
Keywords: aluminium metal matrix composite; grain structure, equal channel angular pressing (ECAP); heat treatment: hardness; wear

Abstract


This study aimed to enhance the grain structure, hardness, and wear resistance of A356-1.5TiB2 composite through a combination of manufacturing processes. Initially, the composite was produced using casting, followed by equal channel angular pressing (ECAP) and heat treatments in various sequences. The heat treatment process involved a solution heat treatment (540ºC, 4 hours), followed by rapid quenching in water (90ºC). The ECAP process was carried out via the BA route, involving four passes at room temperature. After ECAP, an aging process was conducted at 155ºC for 3 hours. The post-application of ECAP and heat treatments had a positive impact on the distribution of TiB2 and TiAl3 particles, aluminum matrix grain refinement, and improved hardness and wear properties of the composite. The composite underwent both ECAP and heat treatment exhibited finer grain structure and higher hardness. The sequence of post-applications of ECAP and heat treatments also affected the grain structure, hardness, and wear resistance of the composite. The composite that underwent solution treatment followed by aging treatment and then ECAP demonstrated the most refined structure and highest hardness. These findings demonstrate that a carefully designed manufacturing process can significantly enhance the mechanical properties of A356-1.5TiB2 composite.

References

[1] N.Gangil, A.N.Siddiquee, S.Maheswari, Aluminium based in-situ composite fabrication through friction stir processing: A review, Journal of Alloys and Compounds, 25 (2017) 686-690. http://dx.doi.org/10.1016/j.matpr.2019.08.062.
[2] T.Abioye, H.Zuhailawati, A.S.Anasyida, S.Ayodeji, P.Oke, Effects of particulate reinforcements on the hardness, impact and tensile strengths of AA 6061-T6 friction stir weldments, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(6) (2021) 1500–1506. doi:10.1177/1464420721995544.
[3] K.M.Shorowordi, T.Laoui, A.S.M.A.Haseeb, J.P.Celis, L.Froyen, Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study, Journal of Materials Processing Technology, 142(3) (2003) 738-743. doi:10.1016/S0924-0136(03)00815-X.
[4] K.Kaviyarasan, S.Thiyagu, V.Shabari, R.Saileswaran, S.Siva Sankaran, T.Sivanesan, Investigation on mechanical properties of aluminium alloy A356 by reinforcing with TiB2 & WC composites, IOP Conference Series: Materials Science and Engineering, 1145 (2021) 012110. doi:10.1088/1757-899X/1145/1/012110.
[5] A.Ali Gad El-Mawla, S.El-Abden, H.Badran, Wear Behaviour of Al6061/TiO2 Composites Synthesized by Stir Casting Process, International Journal of Advanced Research Trends in Engineering and Technology, 41(2) (2021) 113-125. doi:10.21608/JAET.2021.55413.1081.
[6] H.Abdizadeh, H.R.Baharyandi, K.Shirvani Moghaddam, Comparing the effect of processing temperature on microstructure and mechanical behaviour of (ZrSiO4 or TiB2)/aluminum composites, Materials Science and Engineering A, 498 (2008) 53-58. doi:10.1016/j.msea.2008.07.009.
[7] R.Arunbharathi, V.P.Ashoka, J.S.C.Samson, Investigation on mechanical properties and dry sliding wear characterization of stir cast LM13 aluminium alloy-ZrB2-TiC particulate hybrid composites, Material Research Express, 6(6) (2019) 066578. doi: 10.1088/2053-1591/ab0ef8.
[8] P.Aasiya P, and Nathi Mohd Suhaib, Influence of compaction pressure and Si3N4/ZrO2 reinforcement on the properties of aluminium hybrid composites, Advance Material Process Technology 8(3) (2021) 1-13. doi:10.1080/2374068X.2021.1945289.
[9] A.Bhowmik, D.Dey, A.Biswas, Comparative Study of Microstructure, Physical and Mechanical Characterization of SiC/TiB2 Reinforced Aluminium Matrix Composite, Silicon 13 (2021) 2003-2010. doi:10.1007/s12633-020-00591-2.
[10] C.T.Lee, S.W.Chen, Quantities of grains of aluminum and those of TiB2 and Al3Ti particles added in the grain-refining processes, Material Science Engineering A, 325(1-2) (2021) 242–248. doi:10.1016/s0921-5093(01)01464.
[11] M.Guzowski, G.K.Sigworth, D.A.Sentner, The role of boron in the grain refinement of aluminium with titanium, Metallurgy Transaction A, 18 (1987) 603-619. doi:https://doi.org/10.1007/BF02649476.
[12] R.G.Guan, D.Tie, A Review on Grain Refinement of Aluminum Alloys: Progresses, Challenges and Prospects, Acta Metallurgica Sinica (English Letters), 30(5) (2017) 409–432. doi:10.1007/s40195-017-0565-8.
[13] C.Wang, A.Ma, J.Sun, H.Liu, H.Huang, Z.Yang, J.Jiang, Effect of ECAP process on as-cast and as-homogenized Mg-Al-Ca-Mn alloys with different Mg2Ca morphologies, Journal of Alloys Compound, 793 (2019) 259–270. doi:10.1016/j.jallcom.2019.04.2
[14] S.Prithivirajan, G.M.Naik, S.Narendranath, V.Desai, Recent progress in equal channel angular pressing of magnesium alloys starting from Segal’s idea to advancements till date – A review, International Journal of Lightweight Materials and Manufacture, 6(1) (2023) 82-107. https://doi.org/10.1016/j.ijlmm.2022.08.001.
[15] W.Wei, R.Y.Mao, K.X.Wei, I.V.Alexandar, J.H.Hu, Effect of equal channel angular pressing on microstructure and grain refining performance of Al–5%Ti master alloy, Material Science and Engineering A, 564 (2013) 92-96. doi:10.1016/j.msea.2012.11.082.
[16] K.X.Wei, Y.W.Zhang, W.Wei, X.Liu, Q.B.Du, I.V.Alexandrov, J. Hu, Enhancing grain refinement efficiency and fading resistance of Al–B master alloys processed by equal channel angular pressing, Journal of Materials Research, 33(12) (2018) 1782–1788. doi:10.1557/jmr.2018.95.
[17] Z.Zhang, S.Hosoda, I.S.Kim, Y.Watanabe, Grain refining performance for Al and Al–Si alloy casts by addition of equal-channel angular pressed Al–5 mass% Ti alloy, Material Science and Engineering A, 425 (2006) 55-63. doi: 10.1016/j.msea.2006.03.018.
[18] A.Chidambaram, S.Balasivanandha Prabu, K.A.Padmanabhan, Microstructure and mechanical properties of AA6061–5wt. %TiB2 in-situ metal matrix composite subjected to equal channel angular pressing, Material Science and Engineering A, 759 (2019) 762-769. doi: 10.1016/j.msea.2019.05.068.
[19] A.Chidambaram, A.S.Vivekananda, S.Balasivanandha Prabu, K.A.Padmanabhan, On the wear behaviour of AA6061 alloy and in-situ AA6061-TiB2 composite subjected to Equal Channel Angular Pressing, Surface Topography: Metrology and Properties, 8(4) (2020) 045005. doi:10.1088/2051-672X/abbb80.
[20] R.Shobha, C.Siddaraju, K.R.Suresh, H.B.Niranjan, Mechanical Property Evaluation of Heat Treated Insitu Al- TiB2 Composite after Severe Plastic Deformation, Material Today Proceedings, 5 (2018) 2534-2540. doi:10.1016/j.matpr.2017.11.036.
[21] T.Lokesh, U.Mallik, Effect of ECAP process on the Microstructure and Mechanical Properties of Al6061-Gr Composites, Materials Today, 5(1) (2018) 2453–2461. doi:10.1016/j.matpr.2017.11.025.
[22] T.E.Abioye, H.Zuhailawati, A.S.Anasyida, S.A.Yahaya, M.N.F.Hilmy, Enhancing the Surface Quality and Tribomechanical Properties of AA 6061-T6 Friction Stir Welded Joints Reinforced with Varying SiC Contents, Journal of Materials Engineering and Performance, 30(6) (2021) 4356–4369. doi:10.1007/s11665-021-05760-x.
[23] M.Chakrabortyl, A.Mandal, G.S.Vinod Kumar, K.R.Ravi, I.G.Siddhalingeshwar, R.Mitra, B.S.Murty, Recent Developments in Aluminium Alloy Reinforced Titanium Diboride in-situ Composites. Indian Foundry Journal, 58 (2019) 29-34. Doi:10.1007/s11665-015-1424-2.
[24] K.Oh-ishi, Y.Hashi, A.Sadakata, K.Kaneko, Z.Horita, T.G.Langdon, Microstructure control of an Al–Mg–Si alloy using equal-channel angular pressing, Materials Science Forum, 396-402 (2002) 333-338. doi:10.4028/www.scientific.net/msf.396-402.333.
[25] Y.Zhao, Z.Lu, L.Mi, Z.Hu, W.Yang, Morphological Evolution of TiB2 and TiAl3 in Al–Ti–B Master Alloy Using Different Ti Adding Routes, Materials (Basels), 15(6) (2022):1984. doi: 10.3390/ma15061984.
[26] A.Mandal, M.Chakaborty, B.S.Murty, Aging behaviour of A356 alloy reinforced with in-situ formed TiB2 particles, Material Science and Engineering A, 489 (2008) 220-226. doi:10.1016/j.msea.2008.01.042.
[27] T.Wang, Y.Zhao, Z.Chen, Y.Zheng, H.Kang, Combining effects of TiB2 and La on the aging behaviour of A356 alloy, Material Science and Engineering A, 644 (2015) 425-430. doi:10.1016/j.msea.2015.07.076.
[28] P.S.Mohanty, and J.E.Gruzleski, Grain refinement mechanisms of hypoeutectic Al-Si alloys, Acta Materialia , 44(9) (1996) 3749-3760. doi: https://doi.org/10.1016/1359-6454(96)00021-3.
[29] X.Dong, S.Ji, Grain Refinement of Al–Si–Mg Cast Alloys by Al3Ti3B Master Alloy, Minerals, Metals and Materials Series (2018) 319-323. doi:http://dx.doi.org/10.1007/978-3-319-72284-943.
[30] X.Sauvage, G.Wilde, S.V.Divinski, Z.Horita, R.Z.Valiev, Review: Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena, Material Science and Engineering A 540 (2012) 1-12. doi: 10.1016/j.msea.2012.01.080.
[31] G.E.Totten, D.S.MacKenzie, Handbook of Aluminium: Physical Metallurgy and Processes, 1 Marcell Dekker (2013).
[32] S.K.Ramesh, G.Kondaiah, B.Tejaswi, Effect of Microstructure and Mechanical Properties of Al–Mg Alloy Processed by ECAP at Room Temperature and Cryo Temperature, Transactions of the Indian Institute of Metals, 70(3) (2017) 639-648. doi: 10.3390/cryst11060683.
[33] R.Du, Q.Gao, S.Wu, S.Lu, X.Zhou, Influence of TiB2 particles on aging behaviour of in-situ TiB2/Al-4.5Cu composites, Material Science and Engineering A, 721 (2018) 244-250. doi: https://doi.org/10.1016/j.msea.2018.02.099.
[34] J.R.Bowen, O.V.Mishin, P.B.Prangnell, D.J.Jensen, Orientation correlations in aluminium deformed by ECAE, Scripta Materialia, 47 (2002) 289-294. doi: https://doi.org/10.1016/S1359-6462(02)00109-4.
[35] P.W.J.Mckenzie, R.Lapoyok, ECAP with back pressure for optimum strength and ductility in aluminium alloy 6061. Part 1: Microstructure, Acta Materialia, 58 (2010) 3198-3211. doi: 10.1016/j.actamat.2010.01.038.
[36] D.A.Hughes, and N.Hansen, High angle boundaries formed by grain subdivision mechanisms, Acta Materialia, 45(9) (1997) 3871-3886. doi:10.1016/S1359-6454(97)00027-X.
[37] R.Abbaschian, L.Abbaschian, and R.E.Reed-Hill, Physical metallurgy principles, 4th ed.; Cengage learning (2010).
[38] R.Guan, R.D.K.Misra, S.Yingqhu, A.Yanan, W.Yuxiang, Z.Yang, T.Di, Mechanism of microstructural refinement of deformed aluminum under synergistic effect of TiAl3 and TiB2 particles and impact on mechanical properties, Material Science and Engineering A, 30(5) (2018) 409–432. doi: https://doi.org/10.1016/j.msea.2018.01.043.
[39] C.Y.Dan, Z.Chen, G.Ji, S.Zhong, Y.Wu, F.Brisset, H.Y.Wang, V.Ji, Microstructure study of cold rolling nanosized in-situ TiB2 particle reinforced Al composites, Material Design, 130 (2017) 357-365. doi: 10.1016/j.matdes.2017.05.076.
[40] P.J.Apps, J.R.Bowen, P.B.Prangnell, The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing, Acta Materialia, 200351 (2003) 2811-2822. doi:10.1016/S1359-6454(03)00086-7.
[41] P.Venkatachalam, S.R.Kumar, B.Ravisankar, V.T.Paul, M.Vijayalakshmi, Effect of processing route on microstructure and mechanical properties of 2014 Al alloy processed by equal channel angular pressing, Transactions of Nonferrous Metals Society of China, 20(10) (2010) 1822-1828. doi: 10.1016/S1003-6326(09)60380-0.
[42] J.Wen-ming, F.Zi-tian, L.De-jun, Microstructure, tensile properties and fractography of A356 alloy under as-cast and T6 obtained with expendable pattern shell casting process, Transaction Nonferrous Metals Society of China, 22 (2012) 7-13. doi: 10.1016/S1003-6326(12)61676-8.
[43] I.A.Ovid’ko, A.G.Sheinerman, and N.V.Skiba, Elongated nanoscale voids at deformed special grain boundary structures in nanocrystalline materials, Acta Materialia 59 (2011). doi: 10.1016/j.actamat.2010.10.005.
[44] M.I.Abd El Aal, N.El Mahallawy, F.A.Shehata, M.Abd El Hameed, E.Y.Yoon, H.S.Kim, Wear properties of ECAP-processed ultrafine grained Al-Cu alloys. Mater Sci Eng A, 527(16-17) (2010) 3726-3732. doi:10.1016/j.msea.2010.03.057.
[45] S.Wilson, and A.T.Alpas, Wear mechanism maps for metal matrix composite, Wear, 212 (1997) 41-49. doi: https://doi.org/10.1016/S0043-1648(97)00142-7.
[46] Stachowiak GW (2005) Wear: Materials, mechanism and practice. John Wiley & Sons (2005).
[47] T.E.Abioye, H.Zuhailawati, A.S.Anasyida, S.A.Yahaya, B.K.Dhindaw, Investigation of the microstructure, mechanical and wear properties of AA6061-T6 friction stir weldments with different particulate reinforcements addition, Journal of Material Research and Technology, 8(5) (2019) 3917-3928. doi:10.1016/j.jmrt.2019.06.055.
[48] A.Mandal, B.S.Murty, M.Chakraborty, Sliding wear behaviour of T6 treated A356–TiB2 in-situ composites, Wear, 266 (2009) 865-872. doi:10.1016/j.wear.2008.12.011.
Published
2025/01/13
How to Cite
Seman, A., Syukron, M., Hussain, Z., Hassan, M. H., Dhindaw, B. K., Abioye, T. E., & Zakaria, S. A. (2024). Enhancing Microstructure, Grain Refinement, and Wear Properties of Cast A356-TiB2 Composite through Improved Sequence of ECAP and Heat Treatment Processes . Journal of Mining and Metallurgy, Section B: Metallurgy, 60(3), 435-450. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/48647
Section
Original Scientific Paper