Prediction of Elastic Modulus, Yield Strength, and Tensile Strength in Biocompatible Titanium Alloys

  • Gordana Marković Institute for Technology of Nuclear and Other Mineral Raw Materials (ITNMS)
  • Jovana Ružić
  • Miroslav Sokić
  • Dušan Milojkov
  • Vaso Manojlović
Keywords: modulus of elasticity, tensile strength, yield strength, biocompatibility, machine learning

Abstract


Titanium alloys are key materials in biomedical engineering, thanks to their exceptional mechanical properties and biocompatibility, which makes them indispensable for medical implants. With the increasing demand for such alloys, the integration of machine learning into their design offers a promising path to reduce costs and speed up the process. This study seeks to develop accurate machine learning models to predict the mechanical properties, including modulus of elasticity, tensile strength, and yield strength, of biocompatible titanium alloys. The results emphasized the significance of including heat treatment parameters and Poisson's ratio, which led to enhanced precision in the prediction of elastic modulus. Moreover, the key roles of iron and tin content in titanium alloys emerged as influential parameters for predicting tensile strength and yield strength, respectively.

References

[1] H. J. Rack, J. I. Qazi, Titanium alloys for biomedical applications, Materials Science and Engineering: C, 26 (8) (2006) 1269-1277. https://doi.org/10.1016/j.msec.2005.08.032
[2] M. S. Baltatu, P. Vizureanu, A. V. Sandu, C. Solcan, L. D. Hritcu, M. C. Spataru, Research Progress of Titanium-Based Alloys for Medical Devices. Biomedicines 11 (11) (2023) 2997. https://doi.org/10.3390/biomedicines11112997.
[3] J. Gummadi, S. Alanka, A review on titanium and titanium alloys with other metals for biomedical applications prepared by powder metallurgy techniques, Materials Today: Proceedings (2023) https://doi.org/10.1016/j.matpr.2023.04.387
[4] A. J. Festas, A. Ramos, J. P. Davim, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 234 (1) (2020) 218-228. https://doi.org/10.1177/1464420719882458
[5] V. S. de Viteri, V. Sáenz, E. Fuentes, Titanium and titanium alloys as biomaterials, Tribology-fundamentals and advancements 1 (5) (2013) 154-181.
[6] R. C. Silva, A. Agrelli, A. N. Andrade, C. L. Mendes-Marques, I. R. Arruda, Luzia , L. R. Santos, N. F. Vasconcelos, and G. Machado, Titanium Dental Implants: An Overview of Applied Nanobiotechnology to Improve Biocompatibility and Prevent Infections, Materials (Basel), 15 (9) (2022) 3150. https://doi.org/10.3390/ma15093150
[7] J. Mohd, H. Abid, Current status and applications of additive manufacturing in dentistry: a literature-based review, Journal of oral biology and craniofacial research 9 (3) (2019), 179-185. https://doi.org/10.1016/j.jobcr.2019.04.004
[8] F. Trevisan, F. Calignano, A. Aversa, G. Marchese, M. Lombardi, S. Biamino, D. Ugues, D. Manfredi, Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. Journal of Applied Biomaterials & Functional Materials. 16 (2) (2018) 57-67. doi:10.5301/jabfm.5000371
[9] Biomaterials Market Size & Share, Growth Analysis - 2031, https://straitsresearch.com/report/biomaterials-market
[10] S. M. McDonald, E. K. Augustine, Q. Lanners, C. Rudin, L. Catherine Brinson, M. L. Becker, Applied machine learning as a driver for polymeric biomaterials design. Nature Communications 14 (1) (2023) 4838. https://doi.org/10.1038/s41467-023-40459-8
[11] A. Suwardi, F. K. Wang, K. Xue, M. Y. Han, P. Teo, P. Wang, S. Wang, Y. Liu, E.Ye, Z. Li, X. J. Loh, Machine Learning-Driven Biomaterials Evolution, Advanced Materials, 34 (1) (2022), 2102703. https://doi.org/10.1002/adma.202102703
[12] V. D. Manojlović, G. Marković, Titanium Alloys Database for Medical Applications, Metallurgical and Materials Data, 1 (1) (2023) 1-6. https://doi.org/10.30544/MMD5
[13] G. Marković, V. Manojlović, J. Ružić, M. Sokić, Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning., Materials. 16 (19) (2023) 6355. https://doi.org/10.3390/ma16196355
[14] K. Xue, F. K. Wang, A. Suwardi, M. Y. Han, P. Teo, P. Wang, S. Wang, E. Ye, Z. Li, X. J. Loh, Biomaterials by design: Harnessing data for future development, Materials Today Bio, 12 (2021) 100165. https://doi.org/10.1016/j.mtbio.2021.100165.
[15] Titanium Alloys Database for Medical Applications. Available online: https://zenodo.org/record/7802694 (accessed on 25 June2023)
[16] https://pypi.org/project/lazypredict/
[17] V. Pekárek, Relation between elastic and heat parameters in metals, Materials Science and Engineering: A 112 (1989): 193-198. https://doi.org/10.1016/0921-5093(89)90358-4
[18] http://silver.neep.wisc.edu/~lakes/PoissonIntro.html
[19] Y Peng, Q Zhu, T Luo, J Cao, Enhancement of the tensile strength by introducing alloy element Fe for Ti based alloy, Solid State Communications 318 (2020) 113982. https://doi.org/10.1016/j.ssc.2020.113982
[20] C. A. O Jun, F. G. Li, Z. K. SUN, Tensile stress–strain behavior of metallic alloys. Transactions of Nonferrous Metals Society of China, 27(11) (2017) 2443-2453. https://doi.org/10.1016/S1003-6326(17)60271-1
[21] A. Keshtta, M. A. H. GepreeL, Effect of Sn-addition on the properties of the biomedical Ti-17Nb-6Ta alloy. In IOP Conference Series: Materials Science and Engineering 553 (1) (2019) 01203210.1088/1757-899X/553/1/012032
[22] D. C. Zhang, S. Yang, M. Wei, Y. F, Mao, C.G., Tan, J. G. Lin, Effect of Sn addition on the microstructure and superelasticity in Ti–Nb–Mo–Sn alloys. Journal of the Mechanical Behavior of Biomedical Materials, 13 (2012) 156-165. https://doi.org/10.1016/j.jmbbm.2012.04.017
Published
2024/12/05
How to Cite
Marković, G., Ružić, J., Sokić, M., Milojkov, D., & Manojlović, V. (2024). Prediction of Elastic Modulus, Yield Strength, and Tensile Strength in Biocompatible Titanium Alloys. Journal of Mining and Metallurgy, Section B: Metallurgy, 60(2), 273-282. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/49376
Section
IOCM&M2023