Effects of hot rolling on microstructures, wear and corrosion resistance of Mo-Ni-W P/M alloyed steels
Abstract
This study analyzes how hot rolling changes the Fe-0.55C-3Mo-10Ni-0.5W alloy steel's microstructure, tensile strength, wear, and corrosion behaviors. Metal powders were pressed at 750 MPa pressure, and the cold-pressed samples were sintered at 5°C/min up to 1400°C for two hours in a mixed-gas environment of 90% nitrogen and 10% hydrogen. Following that, the generated steels underwent hot rolling at 40% and 80% deformation rates. The microstructures demonstrate that MoC(N), WC(N), and MoWC(N) were created and that the steels had finer microstructures and better mechanical characteristics as the deformation rate increased. As the degree of distortion increased, the wear reduced. Furthermore, the hot rolling method improved corrosion resistance, as shown by the Tafel curve analysis. The greatest factor supporting corrosion resistance was the increase in density value throughout the rolling process.
References
Gündüz, S.; Karabulut, H.; Erden, M.A.; Türkmen, M. Microstructural Effects on Fatigue Behavior of a Forged Medium Carbon Microalloyed Steel. Mater. Test. 2013, 55, 865–870, doi:10.3139/120.110511.
Kianian, B. Comparing Acquisition and Operation Life Cycle Costs of Powder Metallurgy and Conventional Wrought Steel Gear Manufacturing Techniques. In Proceedings of the Procedia CIRP; Elsevier, January 1, 2019; Vol. 81, pp. 1101–1106.
Flodin, A. Powder Metallurgy Technology: A Review of the State of the Art. Power Transm. Eng. 2016, 38–43.
Coelho, L.B.; Fava, E.; Kooijman, A.M.; Gonzalez-Garcia, Y.; Olivier, M.-G. Molybdate as a Corrosion Inhibitor for Hot Dip Galvanized Steel Scribed to the Substrate: A Study Based on Global and Localized Electrochemical Approaches. Corros. Sci. 2020, 175, 108893, doi:10.1016/j.corsci.2020.108893.
Wu, M.; Ma, H.; Shi, J. Beneficial and Detrimental Effects of Molybdate as an Inhibitor on Reinforcing Steels in Saturated Ca(OH)2 Solution: Spontaneous Passivation. Cem. Concr. Compos. 2021, 116, 103887, doi:10.1016/j.cemconcomp.2020.103887.
Wu, M.; Shi, J. Beneficial and Detrimental Impacts of Molybdate on Corrosion Resistance of Steels in Alkaline Concrete Pore Solution with High Chloride Contamination. Corros. Sci. 2021, 183, 109326, doi:10.1016/j.corsci.2021.109326.
Erden, M.A.; Yaşar, N.; Korkmaz, M.E.; Ayvacı, B.; Nimel Sworna Ross, K.; Mia, M. Investigation of Microstructure, Mechanical and Machinability Properties of Mo-Added Steel Produced by Powder Metallurgy Method. Int. J. Adv. Manuf. Technol. 2021, 114, 2811–2827, doi:10.1007/S00170-021-07052-Z.
Erden, M.A.; Gündüz, S.; Çalıgülü, U.; Boz, M. Investigation of Hardness and Microstructure Properties of Non-Alloyed and Hardox Steel Combined with the Submerged Arc Welding Method. J. Fac. Eng. Archit. Gazi Univ. 2018, 33, 221-226, doi:10.17341/gazimmfd.406794.
Tracey, V.A. Nickel-Sintered Steels: Developments, Status, and Prospects. In Proceedings of the Advances in Powder Metallurgy, no longer published by Elsevier, November 1, 1992; Vol. 5, pp. 303–314.
Upadhyaya, G.S., 2000. Sintered Metallic and Ceramic Materials—Sintered Low-Alloy Ferrous Materials.
Ahssi, M.A.M.; Erden, M.A.; Acarer, M.; Çuğ, H. The Effect of Nickel on the Microstructure, Mechanical Properties, and Corrosion Properties of Niobium-Vanadium Microalloyed Powder Metallurgy Steels. Materials (Basel), 2020, 13, 4021, doi:10.3390/ma13184021.
Jahazi, M.; Eghbali, B., The Influence of Hot Forging Conditions on the Microstructure and Mechanical Properties of Two Microalloyed Steels. In Proceedings of the Journal of Materials Processing Technology, Elsevier, June 15, 2001, Vol. 113, pp. 594–598.
Kaynar, A.; Gündüz, S.; Türkmen, M. Investigation on the Behavior of Medium Carbon and Vanadium Microalloyed Steels by Hot Forging Test. Mater. Des. 2013, 51, 819–825, doi:10.1016/j.matdes.2013.04.102.
Phillips, R.A.; King, J.E.; Moon, J.R. Fracture Toughness of Some High-Density PM Steels. Powder Metall. 2000, 43, 43–48, doi:10.1179/pom.2000.43.1.43.
Yao, G.; Pan, S.; Yuan, J.; Guan, Z.; Li, X. A Novel Process for Manufacturing Copper with Size-Controlled in-Situ Tungsten Nanoparticles by Casting. J. Mater. Process. Technol. 2021, 296, doi:10.1016/j.jmatprotec.2021.117187.
Han, T.; Hou, C.; Zhao, Z.; Huang, X.; Tang, F.; Li, Y.; Song, X. W-Cu Composites with Excellent Comprehensive Properties. Compos. Part B Eng. 2022, 233, doi:10.1016/j.compositesb.2022.109664.
Lian, J.J.; Ma, X.G.; Jiang, Z.Y.; Lee, C.S.; Zhao, J.W. A Review of the Effect of Tungsten Alloying on the Microstructure and Properties of Steels. Tungsten 2023, 5, 440–466, doi:10.1007/S42864-022-00174-1/TABLES/4.
Higashino, S.; Miyake, M.; Ikenoue, T.; Hirato, T. Formation of a Photocatalytic WO3 Surface Layer on Electrodeposited Al-W Alloy Coatings by Selective Dissolution and Heat Treatment. Sci. Rep. 2019, 9, doi:10.1038/s41598-019-52178-6.
Zhao, J.; Jiang, Z.; Lee, C.S. Functions of Tungsten Alloying in Microalloyed Steels; 2014; ISBN 9781633215313.
Sohar, C.R., Lifetime Controlling Defects in Tool Steels, 2011;
Fujikura, M.; Kasama, A.; Tanaka, R.; Hanada, S. Effect of Alloy Chemistry on the High Temperature Strengths and Room Temperature Fracture Toughness of Advanced Nb-Based Alloys. Mater. Trans. 2004, 45, 493–501, doi:10.2320/matertrans.45.493.
Park, J.S.; Lee, K.A.; Lee, C.S. Effect of W-Addition on Low Cycle Fatigue Behavior of High Cr Ferritic Steels. Met. Mater. Int. 1999, 5, 559–562, doi:10.1007/BF03026305.
Masuyama, F. History of Power Plants and Progress in Heat Resistant Steels. ISIJ Int. 2001, 41, 612–625.
Weber, T.; Aktaa, J. Numerical Assessment of Functionally Graded Tungsten/Steel Joints for Divertor Applications. Fusion Eng. Des. 2011, 86, 220–226, doi:10.1016/j.fusengdes.2010.12.084.
Ma, Y.; Zhu, W.; Cai, Q.; Liu, W.; Pang, X. Microstructural Evolution and Mechanical Properties in the Partial Transient Liquid Phase Diffusion Bonding of Tungsten to Steel. Int. J. Refract. Met. Hard Mater. 2018, 73, 91–98, doi:10.1016/j.ijrmhm.2018.02.002.
Lu, C.; Wang, Y.; Lei, X.; Yang, J.; Huang, J.; Chen, S.; Zhao, Y. Influence of Fe-W Intermetallic Compound on Fracture Behavior of Steel/Tungsten HIP Diffusion Bonding Joint: Experimental Investigation and First-Principles Calculation. J. Manuf. Process. 2020, 55, 131–142, doi:10.1016/j.jmapro.2020.03.054.
Zhu, W.; Liu, W.; Ma, Y.; Cai, Q.; Wang, J.; Duan, Y. Microstructural Characteristics, Mechanical Properties, and Interfacial Formation Mechanism of Tungsten Alloy/Steel Composite Structure Fabricated by HIP Co-Sintering. Mater. Des. 2021, 211, 110127, doi:10.1016/j.matdes.2021.110127.
Simsir, H.; Akgul, Y.; Erden, M.A. Hydrothermal Carbon Effect on Iron Matrix Composites Produced by Powder Metallurgy. Mater. Chem. Phys. 2020, 242, 122557, doi:10.1016/j.matchemphys.2019.122557.
M’Saoubi, R.; Czotscher, T.; Andersson, O.; Meyer, D. Machinability of Powder Metallurgy Steels Using PcBN Inserts. In Proceedings of the Procedia CIRP; Elsevier, January 1, 2014; Vol. 14, pp. 83–88.
Jing, W.; Yisan, W.; and Yichao, D. Reaction Synthesis of Fe-(Ti,V)C Composites. J. Mater. Process. Technol. 2008, 197, 54–58, doi:10.1016/j.jmatprotec.2007.06.016.
Okay, F.; Islak, S. Microstructure and Mechanical Properties of Aluminum Matrix Boron Carbide and Carbon Nanofiber Reinforced Hybrid Composites. Sci. Sinter. 2022, 54, 125–138, doi:10.2298/SOS2202125O.
Kati, N.; Ozan, S.; Yildiz, T.; Korkmaz, A. Controlling the structural characteristics of ZnO nanomaterials by reaction pressure and reaction time. Sci. Sinter. 2022, 54, 73–80, doi:10.2298/SOS2201073K.
Caligulu, U.; Durmus, H.; Akkas, M.; Sahin, B. Microstructure and Mechanical Properties of Ni Matrix B4C Reinforced Functionally Graded Composites. Sci. Sinter. 2021, 53, 475–484, doi:10.2298/SOS2104475C.
Avşar, E.; Durlu, N.; Ataş, A.; Bozacı, C.; Özdural, H. Joining of Iron-Based Powder Metallurgy Parts with Sintering. 2010.
M. Aydın, M. Gavas, M. Yaşar, Y.A. Production Methods and Manufacturing Technologies. 2011.
ERTENLİ, M.F.; KALKAN, I.; BÜYÜKKARAGOZ, A. Gövde Buruşmalarının Elastik Olmayan Yanal Burkulma Sınır Uzunluğuna Etkisi. Politek. Derg. 2021, 24, 347–354, doi:10.2339/politeknik.821093.
Uranga, P.; Rodríguez-Ibabe, J.M. Thermomechanical Processing of Steels and Metals (Basel). 2020, 10, 248.
Danışmanı, T.; Gündüz, S. LABORATUVAR ÖLÇEKLİ HADDELEME ÜNİTESİNDE HADDELENEN ALAŞIMLI ÇELİKLERİN MİKROYAPI VE MEKANİK ÖZELLİK İLİŞKİSİNİN ARAŞTIRILMASI. 2022.
Ertenli, M.F.; Erdal, E.; Buyukkaragoz, A.; Kalkan, I.; Aksoylu, C.; Özkılıç, Y.O. Lateral Torsional Buckling of Doubly-Symmetric Steel Cellular I-Beams. Steel Compos. Struct. 2023, 46, 709–718, doi:10.12989/scs.2023.46.5.709.
Xu, H.; Shen, Y.; Cao, R.; Li, W.; Pang, Y.; Che, H.; Wang, T.; Liang, C.; Liu, S.; Qin, W.; et al. Effect of Different Rolling Passes on Microstructure and Mechanical Properties of M390 Powder Metallurgy High-Speed Steel. J. Mater. Eng. Perform. 2022, 31, 9650–9659, doi:10.1007/s11665-022-06988-x.
Hashimoto, S.; Ikeda, S.; Sugimoto, K.I.; Miyake, S. Effects of Nb and Mo Addition to 0.2% C-1.5% Si-1.5% Mn Steel on Mechanical Properties of Hot Rolled TRIP-Aided Steel Sheets. ISIJ Int. 2004, 44, 1590–1598, doi:10.2355/isijinternational.44.1590.
Chilton, J.M.; Roberts, M.J. Microalloying Effects in Hot-Rolled Low-Carbon Steels Finished at High Temperatures. Metall. Trans. A 1980, 11, 1711–1721, doi:10.1007/BF02660526.
Baharvand, M.; Zanganeh, A.; Mirzadeh, H.; Habibi Parsa, M. Effects of Hot Rolling and Homogenisation Treatment on Low Alloy Steel Ingot. Mater. Sci. Technol. (United Kingdom) 2020, 36, 835–842, doi:10.1080/02670836.2020.1744249.
Ertenli, M.F.; Esen, İ. The Effect of the Various Porous Layers on Thermomechanical Buckling of FGM Sandwich Plates. Mech. Adv. Mater. Struct. 2023, doi:10.1080/15376494.2023.2299934.
Xu, S.; Sun, X.; Liang, X.; Liu, J.; Yong, Q. Effect of Hot Rolling Deformation on Microstructure and Mechanical Properties of a High-Ti Wear-Resistant Steel. Jinshu Xuebao/Acta Metall. Sin. 2020, 56, 1581–1591, doi:10.11900/0412.1961.2020.00124.
Halfa, H. Thermodynamic Calculation for Silicon ModifiedAISI M2 High Speed Tool Steel. J. Miner. Mater. Charact. Eng. 2013, 01, 257–270, doi:10.4236/jmmce.2013.15040.
Lee, W.B.; Hong, S.G.; Park, C.G.; Kim, K.H.; Park, S.H. Influence of Mo on Precipitation Hardening in Hot Rolled HSLA Steels Containing Nb. Scr. Mater. 2000, 43, 319–324, doi:10.1016/S1359-6462(00)00411-5.
Junhua, K.; Lin, Z.; Bin, G.; Pinghe, L.; Aihua, W.; Changsheng, X. Influence of Mo Content on Microstructure and Mechanical Properties of High-Strength Pipeline Steel. Mater. Des. 2004, 25, 723–728, doi:10.1016/j.matdes.2004.03.009.
Straffelini, G.; Fontanari, V.; Molinari, A. Influence of Microstructure on Impact Behavior of Sintered Ferrous Materials. Powder Metall. 1995, 38, 45–51, doi:10.1179/pom.1995.38.1.45.
Shanmugasundaram, D.; Chandramouli, R. Tensile and Impact Behavior of Sinter-Forged Cr, Ni, and Mo Alloyed Powder Metallurgy Steels. Mater. Des. 2009, 30, 3444–3449, doi:10.1016/j.matdes.2009.03.020.
Liu, W.; Zhang, L.; Ma, Y.; Cai, Q.; Zhu, W.; Wang, R.; Wen, Z. Low-Temperature Co-Sintering of Tungsten Alloy/Steel Composite Structure. Int. J. Refract. Met. Hard Mater. 2020, 90, 105224, doi:10.1016/j.ijrmhm.2020.105224.
Gething, B.A.; Heaney, D.F.; Koss, D.A.; Mueller, T.J., The Effect of Nickel on the Mechanical Behavior of Molybdenum P/M Steels, 2005, 390, 19–26, doi:10.1016/j.msea.2004.05.087.
Elkilani, R.; Çuğ, H.; Erden, A. The Effects of the Hot Rolling Process on Mechanical Properties, Corrosion Resistance, and Microstructures of Mo-Ni Alloyed Steels Produced by Powder Metallurgy. Sci. Sinter. 2024, 59–78, doi:10.2298/sos230625040e.
Astm, I. Standard Test Method for Density, Oil Content, and Interconnected Porosity of Sintered Metal Structural Parts and Oil-Impregnated Bearings. B328-96 2003, 96, 1–4.
Gündüz, S.; Çapar, A. Influence of Forging and Cooling Rate on Microstructure and Properties of Medium Carbon Microalloy Forging Steel. J. Mater. Sci. 2006, 41, 561–564, doi:10.1007/s10853-005-4239-y.
Yirik, A.G.; Gündüz, S.; Taştemür, D.; Erden, M.A., Microstructural and Mechanical Properties of Hot Deformed AISI 4340 Steel Produced by Powder Metallurgy, Sci. Sinter. 2023, 55, 45–56, doi:10.2298/SOS2301045Y.
Wang, S.; Hou, L.G.; Luo, J.R.; Zhang, J.S.; Zhuang, L.Z. Characterization of Hot Workability in AA 7050 Aluminum Alloy Using Activation Energy and 3-D Processing Map. J. Mater. Process. Technol. 2015, 225, 110–121, doi:10.1016/j.jmatprotec.2015.05.018.
Inagaki, H. ROLE OF ANNEALING TWINS FOR GRAIN REFINEMENT IN CONTROLLED ROLLING OF LOW CARBON MICROALLOYED STEEL. Trans. Iron Steel Inst. Japan 1983, 23, 1059–1067, doi:10.2355/isijinternational1966.23.1059.
I. Tamura, C. Ouchi, T. Tanaka, and H.S. Thermomechanical Processing of High-Strength Low-Alloy Steels; 1988
Hong, S.G.; Lee, W.B.; Park, C.G. Effects of Tungsten Addition on the Microstructural Stability of 9Cr-Mo Steels. J. Nucl. Mater. 2001, 288, 202–207, doi:10.1016/S0022-3115(00)00558-4.
Skowronek, A.; Woniak, D.; Grajcar, A. Effect of Mn Addition on Hot‐working Behavior and Microstructure of Hot‐rolled Medium‐mn Steels. Metals (Basel). 2021, 11, 1–14, doi:10.3390/met11020354.
M. Korczynsky Microalloying and thermomechanical Treatment. Proceedings of the International Symposium on Microstructure and Properties of HSLA Steels. Pittsburgh, PA, USA, 1987, 3, 169–201.
Gunduz, S.; Erden, M.A.; Karabulut, H.; Turkmen, M. The Effect of Vanadium and Titanium on the Mechanical Properties of Microalloyed PM Steel. Powder Metall. Met. Ceram. 2016, 55, 277–287, doi:10.1007/s11106-016-9803-2.
Erden, M. E. H., M. E. T., and M.T. The Effect of Ni on the Microstructure and Mechanical Properties of Nb-V Microalloyed Steels Produced by Powder Metallurgy, 2016, Vol. 19.
Erden, M.A.; Ayvacı, B. The Effect on Mechanical Properties of Pressing Technique in PM Steels. Acta Phys. Pol. A 2019, 135, 1078–1080, doi:10.12693/APhysPolA.135.1078.
Liu, K.; Zhang, H.; Xiu, M.; Huang, Z.; Huang, H.; Xu, Y.; Zhou, R.; Xiao, H. Microstructure Evolution, Mechanical Properties, and Corrosion Resistance of Hot Rolled and Annealed Ti-Mo-Ni Alloy. Metals (Basel). 2023, 13, 566, doi:10.3390/met13030566.
Salas-Reyes, A.E.; Altamirano-Guerrero, G.; Deaquino, R.; Salinas, A.; Lara-Rodriguez, G.; Figueroa, I.A.; González-Parra, J.R.; Mintz, B. The Hot Ductility, Microstructures, Mechanical Properties, and Corrosion Resistance of an Advanced Boron-Containing Complex Phase Steel Heat-Treated Using the Quenching and Partitioning (Q&P) Process. Metals (Basel). 2023, 13, doi:10.3390/met13020257.
Alharthi, N.; Sherif, E.S.M.; Abdo, H.S.; and El Abedin, S.Z. Effect of Nickel Content on the Corrosion Resistance of Iron-Nickel Alloys in Concentrated Hydrochloric Acid Pickling Solutions. Adv. Mater. Sci. Eng. 2017, 2017, doi:10.1155/2017/1893672.
Martins, C.A.; de Faria, G.L.; Mayo, U.; Isasti, N.; Uranga, P.; Rodríguez-Ibabe, J.M.; de Souza, A.L.; Cohn, J.A.C.; Rebellato, M.A.; Gorni, A.A. Production of a Non-Stoichiometric Nb-Ti HSLA Steel by Thermomechanical Processing on a Steckel Mill. Metals (Basel). 2023, 13, doi:10.3390/met13020405.
Gündüz, S.; Erden, M.A.; Karabulut, H.; Türkmen, M. Effect of the Addition of Niobium and Aluminum on the Microstructures and Mechanical Properties of Micro-Alloyed Pm Steels. Mater. Tehnol. 2016, 50, 641–648, doi:10.17222/mit.2015.248.
Kostryzhev, A.G.; Al Shahrani, A.; Zhu, C.; Cairney, J.M.; Ringer, S.P.; Killmore, C.R.; Pereloma, E. V. Effect of Niobium Clustering and Precipitation on Strength of an NbTi-Microalloyed Ferritic Steel. Mater. Sci. Eng. A 2014, 607, 226–235, doi:10.1016/j.msea.2014.03.140.
Kammouni, A.; Saikaly, W.; Dumont, M.; Marteau, C.; Lacroix, S.; Stenback-Lund, E.; Oudrhiri Hassani, F.; Perlade, A. Microstructural Characterization and Mechanical Properties of Vanadium Microalloyed Steels. J. Mater. Environ. Sci. 2015, 6, 3457–3464.
Xu, G.; Gan, X.; Ma, G.; Luo, F.; Zou, H. The Development of Ti-Alloyed High Strength Microalloy Steel. Mater. Des. 2010, 31, 2891–2896, doi:10.1016/j.matdes.2009.12.032.
Saleh, N.; Mansour, S.; Hague, R. Investigation into the Mechanical Properties of Rapid Manufacturing Materials. Solid Free. Fabr. Symp. Proc. 2002, 287–296.
Erden, M.A., The Effect of the Sintering Temperature and Addition of Niobium and Vanadium on the Microstructure and Mechanical Properties of Microalloyed PM Steels. Metals (Basel). 2017, 7, 329, doi:10.3390/met7090329.
Erden, M.A. THE EFFECT OF SINTERING TIME ON TENSILE STRENGTH OF NB-V MICROALLOYED POWDER METALLURGY STEELS. NWSA Acad. Journals 2020, 15, 15–22, doi:10.12739/nwsa.2020.15.1.2a0180.
TAŞTEMÜR, D.; GÜNDÜZ, S.; Tastemur, D.; Gunduz, S.; Erden, M.A. Investigation of Thermomechanical Processing of Nb Microalloyed Steel Produced by Powder Metallurgy. GAZI Univ. J. Sci. 2021, 35, 606–616, doi:10.35378/gujs.835371.
Erden, M.A.; Aydın, F. Wear and Mechanical Properties of Carburized AISI 8620 Steel Produced by Powder Metallurgy. Int. J. Miner, Metall. Mater. 2021, 28, 430–439.
Zhou, G.; Wei, W.; Liu, Q. Effect of Hot Rolling on Microstructural Evolution and Wear Behaviors of G20crni2 Moa Bearing Steel. Metals (Basel). 2021, 11, 957, doi:10.3390/met11060957.
Günen, A.; Döleker, K.M.; Korkmaz, M.E.; Gök, M.S.; Erdogan, A. Characteristics, High Temperature Wear and Oxidation Behavior of Boride Layer Grown on Nimonic 80A Ni-Based Superalloy. Surf. Coatings Technol. 2021, 409, 126906, doi:10.1016/j.surfcoat.2021.126906.
Gupta, M.K.; Korkmaz, M.E.; Shibi, C.S.; Ross, N.S.; Singh, G.; Demirsöz, R.; Jamil, M.; Królczyk, G.M. Tribological Characteristics of Additively Manufactured 316 Stainless Steel against 100 Cr6 Alloy Using Deep Learning. Tribol. Int. 2023, 188, 108893, doi:10.1016/j.triboint.2023.108893.
Gupta, M.K.; Demirsöz, R.; Korkmaz, M.E.; Ross, N.S. Wear and Friction Mechanism of Stainless Steel 420 Under Various Lubrication Conditions: A Tribological Assessment With Ball on Flat Test. J. Tribol. 2023, 145, doi:10.1115/1.4056423.
Korkmaz, M.E.; Gupta, M.K.; Singh, G.; Kuntoğlu, M.; Patange, A.; Demirsoz, R.; Ross, N.S.; Prasad, B. Machine Learning Models for Online Detection of Wear and Friction Behavior of Biomedical Graded Stainless Steel 316L under Lubricating Conditions. Int. J. Adv. Manuf. Technol. 2023, 128, 2671–2688, doi:10.1007/s00170-023-12108-3.
Polat, S.; Sun, Y.; Çevik, E.; Colijn, H.; Turan, M.E. Investigation of Wear and Corrosion Behavior of Graphene Nanoplatelet-Coated B4C Reinforced Al-Si Matrix Semi-Ceramic Hybrid Composites. J. Compos. Mater. 2019, 53, 3549–3565, doi:10.1177/0021998319842297.
Gao, F.; Hu, Y.; Gong, Z.; Liu, T.; Gong, T.; Liu, S.; Zhang, C.; Quan, L.; Kaveendran, B.; Pan, C. Fabrication of Chitosan/Heparinized Graphene Oxide Multilayer Coating to Improve Corrosion Resistance and Biocompatibility of Magnesium Alloys. Mater. Sci. Eng. C 2019, 104, 109947, doi:10.1016/j.msec.2019.109947.
Meesak, T.; Thedsuwan, C. Corrosion Behaviors of Stainless Steel Parts Formed by the Powder Metallurgy Process. In Proceedings of the Materials Today: Proceedings; Elsevier, January 1, 2018; Vol. 5, pp. 9560–9568.
Kim, Y.S.; Kim, J.G. Corrosion Behavior of Pipeline Carbon Steel under Different Iron Oxide Deposits in the District Heating System. Metals (Basel). 2017, 7, 182, doi:10.3390/met7050182.
Simsir, H.; Erden, M.A. Investigation of the Mechanical, Tribological, and Corrosion Properties of 316L SS-HTC Composites: Étude des Propriétés Mécaniques, Tribologiques et de Corrosion Des Composites 316L SS-HTC. Can. Metall. Q. 2023, doi:10.1080/00084433.2023.2247176.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.