Characterizations and boron diffusion modelling on the AISI H13 steel

CHARACTERIZATIONS AND BORIDING KINETICS

  • Mourad Keddam University Of Science And Technology Houari Boumediene, Algeria
  • Martin Ortiz-Dominguez https://orcid.org/0000-0003-4475-9804
  • Ángel Jesús Morales-Robles https://orcid.org/0009-0003-6810-6565
Keywords: Boronizing, borides, diffusion model, Activation energy, contour diagram.

Abstract


A kinetic approach accounting for the linearity of boron profiles through the boronized layer on AISI H13 steel was developed. It aims to track the temporal evolution of the thicknesses of FeB and (FeB + Fe2B) layers by considering new expressions for the mass balance equation at each growth front. These surface layers were generated by pack-boronizing AISI H13 steel in the temperature range of 1123 to 1273 K for durations ranging from 2 to 8 hours.. Finally, this linear model has been validated for two other sets of processing parameters (1323 K for 4.5 and 8.5 h). Iso-thickness diagrams were also proposed to optimize the thicknesses of the layers for targeted industrial usage.

Author Biographies

Martin Ortiz-Dominguez, https://orcid.org/0000-0003-4475-9804

Autonomous University of Hidalgo State, Escuela Superior de Ciudad Sahagún-Mechanical Engineering, Carretera Cd. Sahagún-O tumba s/n, Zona Industrial C.P. 43990, Hidalgo, México

 

Ángel Jesús Morales-Robles, https://orcid.org/0009-0003-6810-6565

Autonomous University of Hidalgo State, Área Académica de Ciencias de la Tierra y Materiales- Instituto de Ciencias Básicas e Ingeniería, Carretera Pachuca–Tulancingo Km. 4.5 s/n, Col. Carboneras, Mineral de la Reforma 42184, Hidalgo, México.

References

References
[1] F.E. Mariani, G.S. Takeya, L.C. Casteletti, A.N. Lombardi, and G.E. Totten, Kinetics of Layers Produced on Niobium by Salt Bath Boriding, Materials Performance and Characterization, 6 (2017) 467-74. https://doi.org/10.1520/MPC20160095.
[2] Mehmet Tarakci, Yucel Gencer, Adnan Calik, The pack-boronizing of pure vanadium under a controlled atmosphere, Applied Surface Science, 256 (2010) 7612-7618. https://doi.org/10.1016/j.apsusc.2010.06.013.
[3] R. Ribeiro, S. Ingole, M. Usta, C. Bindal, A.H. Ucisik, H. Liang, Tribological investigation of tantalum boride coating under dry and simulated body fluid conditions, Wear, 262 (2007) 1380-1386. https://doi.org/10.1016/j.wear.2007.01.009.
[4] Alaeddine Kaouka, Khedidja Benarous, Electrochemical boriding of titanium alloy Ti-6Al-4V, Journal of Materials Research and Technology, 8 (2019) 6407-6412. ,https://doi.org/10.1016/j.jmrt.2019.10.024.
[5] C.A. Cuao-Moreu, I. Campos-Silva, A.M. Delgado-Brito, E.O. Garcia-Sanchez, A. Juarez-Hernandez, Jose M. Diabb-Zavala, M.A.L. Hernandez-Rodriguez, Effect of laser surface texturing and boriding on the tribocorrosion resistance of an ASTM F-1537 cobalt alloy, Wear, 523 (2023) 204799. https://doi.org/10.1016/j.wear.2023.204799
[6] N. Makuch, M. Kulka, M. Keddam, A. Piasecki, Growth Kinetics, Microstructure Evolution, and Some Mechanical Properties of Boride Layers Produced on X165CrV12 Tool Steel, Materials, 16 (2022) 26. https://doi.org/10.3390/ma16010026
[7] P. Yang, X.C. Wu, Y.A. Min, T.R. Wu, J.Z. Gui, Plasma boriding of high strength alloy steel with nanostructured surface layer at low temperature assisted by air blast shot peening, Surface and Coatings Technology, 228 (2013) 229-233. https://doi.org/10.1016/j.surfcoat.2013.04.033.
[8] M. Olivares-Luna, J.L. Rosales-Lopez, L.E. Castillo-Vela, K.D. Chaparro Pérez, A.M. Delgado-Brito, I. Mejía-Caballero, I. Campos-Silva, Insights on the pulsed-DC powder-pack boriding process: The role of the electric charge on the growth of the boride layer and the semiconductor behavior of the boriding media, Surface and Coatings Technology, 480 (2024) 130588. https://doi.org/10.1016/j.surfcoat.2024.130588.
[9] M. Ortiz-Domínguez, Á.J. Morales-Robles, O.A. Gómez-Vargas, T de J. Cruz-Victoria, Analysis of Diffusion Coefficients of Iron Monoboride and Diiron Boride Coating Formed on the Surface of AISI 420 Steel by Two Different Models: Experiments and Modelling, Materials, 16 (2023) 4801. https://doi.org/10.3390/ma16134801
[10] M. Keddam, J. Peter, Simulating the Growth of Dual-Phase Boride Layer on AISI M2 Steel by Two Kinetic Approaches, Coatings, 11 (2021) 433. https://doi.org/10.3390/coatings11040433
[11] A. Milinović, J. Stojšić, I. Kladarić, B. Matijević, Evaluation of Boride Layers on C70W2 Steel Using a New Approach to Characterization of Boride Layers, Materials, 15 (2022) 3891. https://doi.org/10.3390/ma15113891
[12] Raden Dadan Ramdan, Tomohiro Takaki, Yoshihiro Tomita, Free Energy Problem for the Simulations of the Growth of Fe2B Phase Using Phase-Field Method, Materials Transactions, 49 (2008) 2625-2631. https://doi.org/10.2320/matertrans.MRA2008158
[13] A.T. Debicha, K. Rayane, O. Allaoui, Modelling Phases Formed during Boriding for Estimation of the Depth of Boron through the Growing in Substrate by the Lattice Boltzmann Method‎, Defect and Diffusion Forum, 369 (2016) 1662-9507. doi:10.4028/www.scientific.net/DDF.369.177
[14] J.C. Velázquez-Altamirano, I.P. Torres-Avila, G. Teran-Méndez, S.I. Capula-Colindres, R. Cabrera-Sierra, R. Carrera-Espinoza, E. Hernández-Sánchez, A Stochastic Model and Investigation into the Probability Distribution of the Thickness of Boride Layers Formed on Low-Carbon Steel, Coatings, 9 (2019) 756. https://doi.org/10.3390/coatings9110756
[15] M. Bendaoud, M. Keddam, A fuzzy neural network approach for modeling the growth kinetics of FeB and Fe2B layers during the boronizing process, Matériaux & Techniques, 106 (2018) 603. https://doi.org/10.1051/mattech/2019002
[16] I. Campos, M. Islas, E. González, P. Ponce, G. Ramírez, Use of fuzzy logic for modeling the growth of Fe2B boride layers during boronizing, Surface and Coatings Technology, 201 (2006) 2717-2723. https://doi.org/10.1016/j.surfcoat.2006.05.016.
[17] N. Vidakis, A. Antoniadis, N. Bilalis, The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds, J. Mater. Process. Technol., 143-144 (2003), 481-485. https://doi.org/10.1016/S0924-0136(03)00300-5

[18] S. Taktak, Some mechanical properties of borided AISI H13 and 304 steels, Mater. Des., 28 (2007) 1836-1843. https://doi.org/10.1016/j.matdes.2006.04.017
[19] M. Ortiz-Domínguez, O.A. Gómez-Vargas, M. Keddam, A. Arenas-Flores , J. García-Serrano, Kinetics of boron diffusion and characterization of Fe2B layers on AISI 9840 steel, Prot. Met. Phys. Chem. S., 53 (2017) 534-547. https://doi.org/10.1134/S2070205117030169
[20] L.G. Yu, X.J. Chen, A.K. Khor, G. Sundararajan, FeB/Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics, Acta Mater., 53 (2005), 2361-2368. https://doi.org/10.1016/j.actamat.2005.01.043
[21] H. Okamoto, B-Fe (boron-iron), J. Phase Equilibria Diffus., 25 (2004) 297-298. https://doi.org/10.1007/s11669-004-0128-3
[22] R.C. Morón, I. Hernández-Onofre, A.D. Contla-Pacheco, D. Bravo-Bárcenas, I. Campos-Silva, Friction and Reciprocating Wear Behavior of Borided AISI H13 Steel Under Dry and Lubricated Conditions, J. of Materi Eng and Perform, 29 (2020) 4529-4540. https://doi.org/10.1007/s11665-020-04957-w
[23] P. Goeuriot, R. Fillit, F. Thevenot, J.H. Driver, H. Bruyas, The influence of alloying element additions on the boriding of steels, Materials Science and Engineering, 55 (1982) 9-19. https://doi.org/10.1016/0025-5416(82)90078-7
[24] D.N. Tsipas, J. Rus, Boronizing of alloy steels. J Mater Sci Lett, 6 (1987) 118-120. https://doi.org/10.1007/BF01729451
[25] Ozkan Ozdemir, Metin Usta, Cuma Bindal, A. Hikmet Ucisik, Hard iron boride (Fe2B) on 99.97wt% pure iron, Vacuum, 80 (2006) 1391-1395. https://doi.org/10.1016/j.vacuum.2006.01.022.
[26] S.A. Lysykh, U.L. Mishigdorzhiyn, V.N. Kornopol’tsev, X.Z. He, Yu. P. Kharaev, Structure of Diffusion Layers on Pure Iron at Powder Borocoppering, Tech. Phys., (2024). https://doi.org/10.1134/S1063784224700233
[27] G. A. Rodríguez-Castro, L. F. Jiménez-Tinoco, J. V. Méndez-Méndez, I. Arzate-Vázquez, A. Meneses-Amador, H. Martínez-Gutiérrez, I. Campos-Silva, Damage Mechanisms in AISI 304 Borided Steel: Scratch and Daimler-Benz Adhesion Tests, Materials Research, 18 (2015) 1346-1353. https://doi.org/10.1590/1516-1439.025515
[28] I. Ozbek, C. Bindal, Kinetics of borided AISI M2 high speed steel, Vacuum, 86 (2011) 391-397. https://doi.org/10.1016/j.vacuum.2011.08.004
[29] G.A. Rodríguez-Castro, L.F. Jiménez-Tinoco, J.V. Méndez-Méndez, I. Arzate-Vázquez, A. Meneses-Amador, H. Martínez-Gutiérrez, I. Campos-Silva, Damage Mechanisms in AISI 304 Borided Steel: Scratch and Daimler-Benz Adhesion Tests, Materials Research, 18 (2015) 1346-1353. https://doi.org/10.1590/1516-1439.025515
[30] A. Günen, İ.H. Karahan, M.S. Karakaş, B. Kurt, Y. Kanca, V.V. Çay, M. Yıldız, Properties and Corrosion Resistance of AISI H13 Hot-Work Tool Steel with Borided B4C Powders. Met. Mater. Int. 26 (2020) 1329-1340. https://doi.org/10.1007/s12540-019-00421-0
[31] Q. Zheng, S. Mei, Z. Xiao, Z. Hu, Z. Chen, Q. Xu, A. Guryev, B. Lygdenov, Tribological, oxidation and corrosion properties of ceramic coating on AISI H13 steel by rare earth-Cr composite boronizing, Ceramics International, 50 (2024) 8760-8776. https://doi.org/10.1016/j.ceramint.2023.12.193.
[32] M. Keddam, R. Chegroune, M. Kulka, D. Panfil, S. Ulker, S. Taktak, Characterization and diffusion kinetics of the plasma paste borided AISI 440C steel, T. Indian I. Metals, 70(2017) 1377-1385. https://doi.org/10.1007/s12666-016-0934-4
[33] S.I. Ayvaz, I. Aydin, Effect of the Microwave Heating on Diffusion Kinetics and Mechanical Properties of Borides in AISI 316L, Trans Indian Inst Met., 73 (2020) 2635-2644. https://doi.org/10.1007/s12666-020-02072-x
[34] M.G. Albayrak, E. Evin, A Different Approach: Effect of Mechanical Alloying on Pack Boronizing, J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-09004-y
[35] G.K. Sireli, H. Yuce, M. Arslan, M. Karimzadehkhoei, S. Timur, Improving the Surface Performance of Discarded AISI T1 Steel by Cathodic Reduction and Thermal Diffusion-Based Boriding. J. of Materi Eng and Perform, 32 (2023), 9504-9514. https://doi.org/10.1007/s11665-023-07817-5
[36] P. Orihel, J. Ptačinová, P. Gogola, M. Keddam, P. Jurči, Pack-boriding of Sleipner steel: microstructure analysis and kinetics modeling Materials Testing, 66 (2024) 43-55. https://doi.org/10.1515/mt-2023-0331
[37] J. Zuno-Silva, M. Ortiz-Domínguez, M. Keddam, M. Elias-Espinosa, O. Damián-Mejía, E. Cardoso-Legorreta, M. Abreu-Quijano, Boriding kinetics of Fe2B layers formed on AISI 1045 steel, J. Min. Metall. Sect. B-Metall., 50 (2014) 101-107. https://doi.org/10.2298/JMMB140323019Z
[38] S. Mei, Y. Zhang, Q. Zheng, Y. Fan, B. Lygdenov, A. Guryev, Compound Boronizing and Its Kinetics Analysis for H13 Steel with Rare Earth CeO2 and Cr2O3, Applied Sciences, 12 (2022) 3636. https://doi.org/10.3390/app12073636
[39 ] P. Topuz, B. Çiçek, O. Akar, Kinetic ınvestigation of AISI 304 stainless steel boronized in ındirect heated fluidized bed furnace, J. Min. Metall. Sect. B-Metall., 52 (2016) 63-68. https://doi.org/10.2298/JMMB150301007T
Published
2025/01/13
How to Cite
Keddam, M., Ortiz-Dominguez, M., & Morales-Robles, Ángel J. (2024). Characterizations and boron diffusion modelling on the AISI H13 steel. Journal of Mining and Metallurgy, Section B: Metallurgy, 60(3), 353-365. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/50618
Section
Original Scientific Paper