From From the alloy design to the microstructural and mechanical properties of medium manganese steels of the third generation of advanced high strength steels
Abstract
In the automotive industry, there is significant interest in developing the third generation of advanced high strength steels (3GAHSSs), particularly the so-called medium Mn steels, which have gained more focus due to their promising properties and relatively inexpensive manufacturing costs. As a result, the purpose of this work is to discuss the original and significant findings in the development of this grade of steel, with a particular emphasis on the link between microstructure, processing, and mechanical characteristics.
References
[2] D. W. Suh and S. J. Kim, “Medium Mn transformation-induced plasticity steels: Recent progress and challenges,” Scr. Mater., vol. 126, pp. 63–67, 2017, doi: 10.1016/j.scriptamat.2016.07.013.
[3] H. Choi, S. Lee, J. Lee, F. Barlat, and B. C. De Cooman, “Characterization of fracture in medium Mn steel,” Mater. Sci. Eng. A, vol. 687, pp. 200–210, Feb. 2017, doi: 10.1016/j.msea.2017.01.055.
[4] C. Wang, W. Cao, J. Shi, C. Huang, and H. Dong, “Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel,” Mater. Sci. Eng. A, vol. 562, pp. 89–95, Feb. 2013, doi: 10.1016/J.MSEA.2012.11.044.
[5] X. Zhao, Y. Shen, L. Qiu, Y. Liu, X. Sun, and L. Zuo, “Effects of intercritical annealing temperature on mechanical properties of Fe-7.9Mn-0.14Si-0.05Al-0.07C steel,” Materials (Basel)., vol. 7, no. 12, pp. 7891–7906, 2014, doi: 10.3390/ma7127891.
[6] B. Hu, H. Luo, F. Yang, and H. Dong, “Recent progress in medium-Mn steels made with new designing strategies, a review,” J. Mater. Sci. Technol., pp. 6–13, 2017, doi: 10.1016/j.jmst.2017.06.017.
[7] B. B. He, H. W. Luo, and M. X. Huang, “Experimental investigation on a novel medium Mn steel combining transformation-induced plasticity and twinning-induced plasticity effects,” Int. J. Plast., vol. 78, pp. 173–186, Mar. 2016, doi: 10.1016/j.ijplas.2015.11.004.
[8] H. Aydin, E. Essadiqi, I. H. Jung, and S. Yue, “Development of 3rd generation AHSS with medium Mn content alloying compositions,” Mater. Sci. Eng. A, vol. 564, pp. 501–508, 2013, doi: 10.1016/j.msea.2012.11.113.
[9] B. Sun et al., “Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions,” Mater. Sci. Eng. A, vol. 729, no. April, pp. 496–507, 2018, doi: 10.1016/j.msea.2018.04.115.
[10] X. G. Wang, B. B. He, C. H. Liu, C. Jiang, and M. X. Huang, “Extraordinary Lüders-strain-rate in medium Mn steels,” Materialia, vol. 6, p. 100288, Jun. 2019, doi: 10.1016/J.MTLA.2019.100288.
[11] W. Hui, C. Shao, Y. Zhang, X. Zhao, and Y. Weng, “Materials Science & Engineering A Microstructure and mechanical properties of medium Mn steel containing 3 % Al processed by warm rolling,” Mater. Sci. Eng. A, vol. 707, no. September, pp. 501–510, 2017, doi: 10.1016/j.msea.2017.09.090.
[12] R. L. Miller, “Ultrafine-grained microstructures and mechanical properties of alloy steels,” Metall. Mater. Trans. B, vol. 3, no. 4, pp. 905–912, Apr. 1972, doi: 10.1007/BF02647665.
[13] M. J. Merwin, “Low-Carbon Manganese TRIP Steels,” vol. 543, pp. 4327–4332, 2007, doi: 10.4028/www.scientific.net/MSF.539-543.4327.
[14] D. W. Suh, S. J. Park, T. H. Lee, C. S. Oh, and S. J. Kim, “Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 41, no. 2, pp. 397–408, 2010, doi: 10.1007/s11661-009-0124-7.
[15] P. J. Gibbs, E. De Moor, M. J. Merwin, J. G. Speer, and D. K. Matlock, “Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel,” doi: 10.1007/s11661-011-0687-y.
[16] H. F. Xu et al., “Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C-5Mn),” Mater. Sci. Eng. A, vol. 532, pp. 435–442, 2012, doi: 10.1016/j.msea.2011.11.009.
[17] B. Hu, H. Luo, F. Yang, and H. Dong, “Journal of Materials Science & Technology Recent progress in medium-Mn steels made with new designing strategies , a review,” J. Mater. Sci. Technol., vol. 33, no. 12, pp. 1457–1464, 2017, doi: 10.1016/j.jmst.2017.06.017.
[18] R. Xiong, H. Peng, S. Wang, H. Si, and Y. Wen, “Effect of stacking fault energy on work hardening behaviors in Fe-Mn-Si-C high manganese steels by varying silicon and carbon contents,” Mater. Des., vol. 85, pp. 707–714, 2015, doi: 10.1016/j.matdes.2015.07.072.
[19] B. L. Ennis, E. Jimenez-Melero, R. Mostert, B. Santillana, and P. D. Lee, “The role of aluminium in chemical and phase segregation in a TRIP-assisted dual phase steel,” Acta Mater., vol. 115, pp. 132–142, 2016, doi: 10.1016/j.actamat.2016.05.046.
[20] D. Woo Suh, H. Ryu, M. S. Joo, H. S. Yang, K. Lee, and H. K. D. H. Bhadeshia, “Medium-Alloy Manganese-Rich Transformation-Induced Plasticity Steels,” doi: 10.1007/s11661-012-1402-3.
[21] G. Mishra, A. K. Chandan, and S. Kundu, “Hot rolled and cold rolled medium manganese steel: Mechanical properties and microstructure,” Mater. Sci. Eng. A, vol. 701, pp. 319–327, Jul. 2017, doi: 10.1016/J.MSEA.2017.06.088.
[22] A. Arlazarov, M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, and P. Barges, “Evolution of microstructure and mechanical properties of medium Mn steels during double annealing,” Mater. Sci. Eng. A, vol. 542, pp. 31–39, 2012, doi: 10.1016/j.msea.2012.02.024.
[23] B. B. He et al., “Materials Science & Engineering A Microstructure and mechanical properties of medium Mn steel containing 3 % Al processed by warm rolling,” Mater. Sci. Eng. A, vol. 707, no. September, pp. 501–510, 2017, doi: 10.1016/j.msea.2017.09.090.
[24] W. S. Yang and C. M. Wan, “The influence of aluminium content to the stacking fault energy in Fe-Mn-Al-C alloy system,” J. Mater. Sci., vol. 25, no. 3, pp. 1821–1823, 1990, doi: 10.1007/BF01045392.
[25] O. A. Zambrano, “Stacking Fault Energy Maps of Fe–Mn–Al–C–Si Steels: Effect of Temperature, Grain Size, and Variations in Compositions,” J. Eng. Mater. Technol., vol. 138, no. 4, Oct. 2016, doi: 10.1115/1.4033632.
[26] B. Sun, F. Fazeli, C. Scott, N. Brodusch, and R. Gauvin, “AC SC,” Acta Mater., 2018, doi: 10.1016/j.actamat.2018.02.005.
[27] T. Furukawa, “Dependence of strength–ductility characteristics on thermal history in lowcarbon, 5 wt-%Mn steels,” Mater. Sci. Technol., vol. 5, no. 5, pp. 465–470, May 1989, doi: 10.1179/mst.1989.5.5.465.
[28] Z. P. Hu et al., “Effect of intercritical rolling temperature on microstructure-mechanical property relationship in a medium Mn-TRIP steel containing δ ferrite,” Mater. Sci. Eng. A, vol. 720, no. 11, pp. 1–10, 2018, doi: 10.1016/j.msea.2018.02.052.
[29] M. Cai, Z. Li, Q. Chao, and P. D. Hodgson, “A Novel Mo and Nb Microalloyed Medium Mn TRIP Steel with Maximal Ultimate Strength and Moderate Ductility,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 45, no. 12, pp. 5624–5634, 2014, doi: 10.1007/s11661-014-2504-x.
[30] S. Yan, T. Liang, J. Chen, T. Li, and X. Liu, “A novel Cu-Ni added medium Mn steel: Precipitation of Cu-rich particles and austenite reversed transformation occurring simultaneously during ART annealing,” Mater. Sci. Eng. A, vol. 746, no. 11, pp. 73–81, 2019, doi: 10.1016/j.msea.2019.01.014.
[31] M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, “Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging,” Acta Mater., vol. 59, no. 2, pp. 658–670, Jan. 2011, doi: 10.1016/j.actamat.2010.10.002.
[32] C. C. Tasan et al., “An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design,” Annu. Rev. Mater. Res., vol. 45, no. 1, pp. 391–431, 2015, doi: 10.1146/annurev-matsci-070214-021103.
[33] S. Lee, S.-J. Lee, S. Santhosh Kumar, K. Lee, and B. C. De Cooman, “Localized Deformation in Multiphase, Ultra-Fine-Grained 6 Pct Mn Transformation-Induced Plasticity Steel,” Metall. Mater. Trans. A, vol. 42, no. 12, pp. 3638–3651, Dec. 2011, doi: 10.1007/s11661-011-0636-9.
[34] Z. H. Cai, H. Ding, Z. Y. Tang, and R. D. K. Misra, “Significance of control of austenite stability and transformation mechanisms in medium-manganese transformation-induced plasticity steel,” Mater. Sci. Eng. A, vol. 676, pp. 289–293, 2016, doi: 10.1016/j.msea.2016.08.124.
[35] X. G. Wang, L. Wang, and M. X. Huang, “Kinematic and thermal characteristics of Lüders and Portevin-Le Châtelier bands in a medium Mn transformation-induced plasticity steel,” Acta Mater., vol. 124, no. November, pp. 17–29, 2017, doi: 10.1016/j.actamat.2016.10.069.
[36] S. Lee, S. Lee, and B. C. De Cooman, “Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning,” Scr. Mater., vol. 65, no. 3, pp. 225–228, 2011, doi: 10.1016/j.scriptamat.2011.04.010.
[37] Y. Ma, “Medium-manganese steels processed by austenite-reverted-transformation annealing for automotive applications,” Mater. Sci. Technol., vol. 33, no. 15, pp. 1713–1727, Oct. 2017, doi: 10.1080/02670836.2017.1312208.
[38] B. C. De Cooman, High Mn TWIP steel and medium Mn steel. Elsevier Ltd, 2017.
[39] X. Zhang, G. Miyamoto, T. Kaneshita, Y. Yoshida, Y. Toji, and T. Furuhara, “Growth mode of austenite during reversion from martensite in Fe-2Mn-1.5Si-0.3C alloy: A transition in kinetics and morphology,” Acta Mater., vol. 154, pp. 1–13, 2018, doi: 10.1016/j.actamat.2018.05.035.
[40] J.-M. Jang, S.-J. Kim, N. H. Kang, K.-M. Cho, and D.-W. Suh, “Effects of annealing conditions on microstructure and mechanical properties of low carbon, manganese transformation-induced plasticity steel,” Met. Mater. Int., vol. 15, no. 6, pp. 909–916, Dec. 2009, doi: 10.1007/s12540-009-0909-7.
[41] J. Hu, L. X. Du, G. S. Sun, H. Xie, and R. D. K. Misra, “The determining role of reversed austenite in enhancing toughness of a novel ultra-low carbon medium manganese high strength steel,” Scr. Mater., vol. 104, pp. 87–90, 2015, doi: 10.1016/j.scriptamat.2015.04.009.
[42] A. Kozłowska, B. Grzegorczyk, M. Morawiec, and A. Grajcar, “Explanation of the PLC effect in advanced high-strength medium-mn steels. A review,” Materials (Basel)., vol. 12, no. 24, 2019, doi: 10.3390/MA12244175.
[43] C. A. O. Wenquan et al., “Microstructures and mechanical properties of the third generation automobile steels fabricated by ART-annealing,” vol. 55, no. 7, pp. 1814–1822, 2012, doi: 10.1007/s11431-012-4877-7.
[44] H. Hu, “EFFECT OF SOLUTES ON LUDERS STRAIN IN LOW-CARBON SHEET STEELS.,” Metall. Trans. A, Phys. Metall. Mater. Sci., vol. 14 A, no. 1, pp. 85–91, 1983, doi: 10.1007/BF02643741.
[45] T. Furukawa, H. Huang, and O. Matsumura, “Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity,” Mater. Sci. Technol. (United Kingdom), vol. 10, no. 11, pp. 964–970, Jan. 1994, doi: 10.1179/mst.1994.10.11.964.
[46] T. Furukawa, “Dependence of strength–ductility characteristics on thermal history in lowcarbon, 5 wt-%Mn steels,” Mater. Sci. Technol. (United Kingdom), vol. 5, no. 5, pp. 465–470, 1989, doi: 10.1179/mst.1989.5.5.465.
[47] D. W. Suh, S. J. Park, T. H. Lee, C. S. Oh, and S. J. Kim, “Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 41, no. 2, pp. 397–408, Feb. 2010, doi: 10.1007/s11661-009-0124-7.
[48] J. Han, S. J. Lee, J. G. Jung, and Y. K. Lee, “The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel,” Acta Mater., vol. 78, pp. 369–377, Oct. 2014, doi: 10.1016/j.actamat.2014.07.005.
[49] J. Han and Y. K. Lee, “The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels,” Acta Mater., vol. 67, pp. 354–361, 2014, doi: 10.1016/j.actamat.2013.12.038.
[50] J.-M. Jang, S.-J. Kim, N. H. Kang, K.-M. Cho, and D.-W. Suh, “Effects of annealing conditions on microstructure and mechanical properties of low carbon, manganese transformation-induced plasticity steel,” Met. Mater. Int., vol. 15, no. 6, pp. 909–916, Dec. 2009, doi: 10.1007/s12540-009-0909-7.
[51] S. Lee and B. C. De Cooman, “On the Selection of the Optimal Intercritical Annealing Temperature for Medium Mn TRIP Steel,” doi: 10.1007/s11661-013-1860-2.
[52] J. Han, S. J. Lee, J. G. Jung, and Y. K. Lee, “The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel,” Acta Mater., vol. 78, pp. 369–377, 2014, doi: 10.1016/j.actamat.2014.07.005.
[53] X. Li, R. Song, N. Zhou, and J. Li, “An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing,” Scr. Mater., vol. 154, pp. 30–33, 2018, doi: 10.1016/j.scriptamat.2018.05.016.
[54] J. Han et al., “The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel,” Acta Mater., vol. 122, pp. 199–206, 2017, doi: 10.1016/j.actamat.2016.09.048.
[55] W. Q. Cao, J. Shi, R. Zhang, Z. J. Peng, C. X. Huang, and H. Dong, “Intercritical rolling induced ultrafine microstructure and excellent mechanical properties of the medium-Mn steel,” Mater. Sci. Eng. A, vol. 583, pp. 84–88, 2013, doi: 10.1016/j.msea.2013.06.067.
[56] J. Han and Y. K. Lee, “The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels,” Acta Mater., vol. 67, pp. 354–361, Apr. 2014, doi: 10.1016/j.actamat.2013.12.038.
[57] Y.-K. Lee and J. Han, “Current opinion in medium manganese steel,” Mater. Sci. Technol., vol. 31, no. 7, pp. 843–856, May 2015, doi: 10.1179/1743284714Y.0000000722.
[58] W. Q. Cao, C. Wang, J. Shi, M. Q. Wang, W. J. Hui, and H. Dong, “Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing,” Mater. Sci. Eng. A, vol. 528, no. 22–23, pp. 6661–6666, 2011, doi: 10.1016/j.msea.2011.05.039.
[59] N. Ranc, W. Du, I. Ranc, and D. Wagner, “Experimental studies of Portevin-Le Chatelier plastic instabilities in carbon-manganese steels by infrared pyrometry,” Mater. Sci. Eng. A, vol. 663, pp. 166–173, 2016, doi: 10.1016/j.msea.2016.03.096.
[60] A. Kozłowska, B. Grzegorczyk, M. Staszuk, P. M. Nuckowski, and A. Grajcar, “Analysis of plastic deformation instabilities at elevated temperatures in hot-rolled medium-Mn steel,” Materials (Basel)., vol. 12, no. 24, 2019, doi: 10.3390/MA12244184.
[61] M. Callahan, “Analyse de la cinétique de transformation et des instabilités de déformation dans des aciers TRIP ” Moyen Manganèse ” de 3ème génération To cite this version : HAL Id : tel-01687833,” 2018.
[62] A. K. SCHDEV, “Dynamic Strain Aging of Various Steels.,” Met. Trans a, vol. V 13A, no. N 10, pp. 1793–1797, 1982, doi: 10.1007/bf02647835.
[63] B. Sun et al., “Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel,” Scr. Mater., vol. 133, pp. 9–13, 2017, doi: 10.1016/j.scriptamat.2017.01.022.
[64] S. Lee, S.-J. Lee, S. Santhosh Kumar, K. Lee, and B. C. De Cooman, “Localized Deformation in Multiphase, Ultra-Fine-Grained 6 Pct Mn Transformation-Induced Plasticity Steel,” Metall. Mater. Trans. A, vol. 42, no. 12, pp. 3638–3651, Dec. 2011, doi: 10.1007/s11661-011-0636-9.
[65] D. W. Suh, J. H. Ryu, M. S. Joo, H. S. Yang, K. Lee, and H. K. D. H. Bhadeshia, “Medium-alloy manganese-rich transformation-induced plasticity steels,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 44, no. 1, pp. 286–293, Jan. 2013, doi: 10.1007/s11661-012-1402-3.
[66] A. H. Cottrell, “LXXXVI. A note on the Portevin-Le Chatelier effect,” London, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 44, no. 355, pp. 829–832, Aug. 1953, doi: 10.1080/14786440808520347.
[67] J. M. Robinson and M. P. Shaw, “Microstructural and mechanical influences on dynamic strain aging phenomena,” Int. Mater. Rev., vol. 39, no. 3, pp. 113–122, 1994, doi: 10.1179/imr.1994.39.3.113.
[68] F. Yang, H. Luo, E. Pu, S. Zhang, and H. Dong, “On the characteristics of Portevin–Le Chatelier bands in cold-rolled 7Mn steel showing transformation-induced plasticity,” Int. J. Plast., vol. 103, no. January, pp. 188–202, 2018, doi: 10.1016/j.ijplas.2018.01.010.
[69] F. Yang, H. Luo, C. Hu, E. Pu, and H. Dong, “Effects of intercritical annealing process on microstructures and tensile properties of cold-rolled 7Mn steel,” Mater. Sci. Eng. A, vol. 685, no. 685, pp. 115–122, Feb. 2017, doi: 10.1016/j.msea.2016.12.119.
[70] Z. H. Cai, H. Ding, R. D. K. Misra, and Z. Y. Ying, “Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content,” Acta Mater., vol. 84, pp. 229–236, 2015, doi: 10.1016/j.actamat.2014.10.052.
[71] J. H. Ryu, J. I. Kim, H. S. Kim, C. S. Oh, H. K. D. H. Bhadeshia, and D. W. Suh, “Austenite stability and heterogeneous deformation in fine-grained transformation-induced plasticity-assisted steel,” Scr. Mater., vol. 68, no. 12, pp. 933–936, 2013, doi: 10.1016/j.scriptamat.2013.02.026.
[72] Y. Wang, Z. Ma, R. Song, S. Zhao, Z. Zhang, and W. Huo, “Correlation between cementite precipitation and Portevin-Le Chatelier effect in a hot-rolled medium Mn steel,” Mater. Lett., vol. 258, p. 126796, 2020, doi: 10.1016/j.matlet.2019.126796.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.