Effects of alloying elements on elastic properties of Al by first-principles calculations

  • Jiong Wang School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
  • Yong Du
  • Shun-Li Shang
  • Zi-Kui Liu
  • Yiwei Li

Abstract


The effects of alloying elements (Co, Cu, Fe, Ge, Hf, Mg, Mn, Ni, Si, Sr, Ti, V, Y, Zn, and Zr) on elastic properties of Al have been investigated using first-principles calculations within the generalized gradient approximation. A supercell consisting of 31 Al atoms and one solute atom is used. A good agreement is obtained between calculated and available experimental data. Lattice parameters of the studied Al alloys are found to be depended on atomic radii of solute atoms. The elastic properties of polycrystalline aggregates including bulk modulus (B), shear modulus (G), Young’s modulus (E), and the B/G ratio are also determined based on the calculated elastic constants (cij’s). It is found that the bulk modulus of Al alloys decreases with increasing volume due to the addition of alloying elements and the bulk modulus is also related to the total molar volume (Vm) and electron density ( nAl31x) with the relationship of nAl31x=1.0594+0.0207*(B/Vm)^(1/2). These results are of relevance to tailor the properties of Al alloys.

Author Biography

Jiong Wang, School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
State Key Laboratory of Powder Metallurgy, Central South University, Lecturer

References

J.R. Davis, R. Joseph, In: ASM Specialty Handbook: ASM International; 1993.

G.E. Totten, M. D.S., In, New York: Marcel Dekker; 2003.

Z.K. Liu, Journal of Phase Equilibria and Diffusion, 30 (2009) 517-534.

Y. Du, S.H. Liu, L.J. Zhang, H.H. Xu, D.D. Zhao, A.J. Wang, L.C. Zhou, CALPHAD, 35 (2011) 427-445.

J. Wang, S.L. Shang, Y. Wang, Z.G. Mei, Y.F. Liang, Y. Du, Z.K. Liu, CALPHAD, 35 (2011) 562-573.

D.G. Clerc, H.M. Ledbetter, J. Phys. Chem. Solids, 59 (1998) 1071.

Z.K. Liu, H. Zhang, S. Ganeshan, Y. Wang, S.N. Mathaudhu, Scripta Materialia, 63 (2010) 686-691.

D. Music, J.M. Schneider, Phys. Rev. B, 74 (2006).

C.L. Zhang, P.D. Han, J.M. Li, M. Chi, L.Y. Yan, Y.P. Liu, X.G. Liu, B.S. Xu, J. Phys. D. Appl. Phys., 41 (2008) 095410.

D.E. Kim, S.L. Shang, Z.K. Liu, Intermetallics, 18 (2010) 1163-1171.

S. Ganeshan, S.L. Shang, Y. Wang, Z.K. Liu, Acta Mater., 57 (2009) 3876-3884.

D. Kim, S.L. Shang, Z.K. Liu, Comp. Mater. Sci., 47 (2009) 254-260.

S.L. Shang, Y. Wang, Z.K. Liu, Appl. Phys. Lett., 90 (2007) 101909.

G. Kresse, J. Furthmuller, Phys. Rev. B, 54 (1996) 11169-11186.

G. Kresse, J. Furthmuller, Comp. Mater. Sci., 6 (1996) 15-50.

P.E. Blöchl, Phys. Rev. B, 50 (1994) 17953-17979.

G. Kresse, D. Joubert, Phys. Rev. B, 59 (1999) 1758-1775.

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77 (1996) 3865-3868.

M. Methfessel, A.T. Paxton, Phys. Rev. B, 40 (1989) 3616-3621.

P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B, 49 (1994) 16223-16233.

H.J. Monkhorst, J.D. Pack, Phys. Rev. B, 13 (1976) 5188-5192.

S.L. Shang, Y. Wang, D. Kim, Z.K. Liu, Comp. Mater. Sci., 47 (2010) 1040-1048.

Y. Le Page, P. Saxe, Phys. Rev. B, 65 (2002) 104104.

G. Simmons, H. Wang, In: M.I.T Press, Cambridge; 1971.

H. Zhang, S.L. Shang, Y. Wang, A. Saengdeejing, L.Q. Chen, Z.K. Liu, Acta Mater., 58 (2010) 4012-4018.

S.L. Shang, A. Saengdeejing, Z.G. Mei, D.E. Kim, H. Zhang, S. Ganeshan, Y. Wang, Z.K. Liu, Comp. Mater. Sci., 48 (2010) 813-826.

S. Ganeshan, S.L. Shang, H. Zhang, Y. Wang, M. Mantina, Z.K. Liu, Intermetallics., 17 (2009) 313-318.

A. Tonejc, A. Bonefaci, J. Appl. Phys., 40 (1969) 419-420.

A. Bendijk, R. Delhez, L. Katgerman, T.H. Dekeijser, E.J. Mittemeijer, N.M. Vanderpers, J. Mater. Sci., 15 (1980) 2803-2810.

A. Tonejc, A. Bonefaci, Scripta Metallurgica, 3 (1969) 145-148.

Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.Q. Chen, Z.K. Liu, CALPHAD, 28 (2004) 79-90.

T. Wang, L.Q. Chen, Z.K. Liu, Metall. Mater. Trans. AMetall. Mater. Trans. A-Phys. Metall. Mater. Sci., 38A (2007) 562-569.

U. Scheuer, B. Lengeler, Phys. Rev. B, 44 (1991) 9883-9894.

R.F.S. Hearmon, Rev. Mod. Phys., 18 (1946) 409-440.

C. Gault, A. Dauger, P. Boch, Physica Status Solidi a-Applied Research, 43 (1977) 625-632.

H. Ledbetter, Physica Status Solidi B-Basic Research, 181 (1994) 81-85.

M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press; 1988.

J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, New York: Oxford University Press; 1985.

S.F. Pugh, Phil. Mag., 45 (1954) 823-843.

A.R. Miedema, F.R. Deboer, P.F. Dechatel, J. Phys. F. Met. Phys., 3 (1973) 1558-1576.

C.H. Li, P. Wu, Chem. Mater., 13 (2001) 4642-4648.

J.H. Rose, H.B. Shore, Phys. Rev. B, 43 (1991) 11605-11611.

J.H. Rose, H.B. Shore, Phys. Rev. B, 48 (1993) 18254-18256.

J.H. Rose, H.B. Shore, Phys. Rev. B, 49 (1994) 11588-11601.

P. Villars, L.D. Calvert, In, ASM International, Materials Park, Ohio; 1991.

Published
2014/06/15
How to Cite
Wang, J., Du, Y., Shang, S.-L., Liu, Z.-K., & Li, Y. (2014). Effects of alloying elements on elastic properties of Al by first-principles calculations. Journal of Mining and Metallurgy, Section B: Metallurgy, 50(1), 37-44. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/5350
Section
Original Scientific Paper