Effect of bottom argon blowing flow rate on evolution behavior of steel-slag interface
Abstract
In this research, the computational fluid dynamics (CFD) software FLUENT is used, which employs the finite volume method, to integrate discrete phase models and multiphase flow models in numerical simulations based on a prototype steel ladle from a particular facility. The simulations aim to investigate the slag entrapment phenomenon in bottom argon blowing. The slag layer is filled with DPM (Discrete Phase Model) particles whose densities are consistent with slag. These particles are used to simulate actual non-metallic inclusions in the slag. If the height of a particle is less than the minimum height of the slag layer, it is thought to have been entrained into the molten steel. By using the User Defined Function (UDF), the tracking of this particle is stopped. The simulation results reveal that the slag eyes have a tendency to increase in size as the argon flow rate increases. The slag eyes area is generally small when the argon flow rate is below 500 L/min. However, there is a noticeable increase in the slag eyes area when the argon flow rate exceeds 1000 L/min. The number of particles entrained into the molten steel increases as the argon flow rate increases; the number of particles entering the steel increases gradually below 1000 L/min and dramatically over 1000 L/min.
References
[2] X. Liu, Q. Jia, C. Liu, A. Xiao, G. Li, Z. He, Q. Wang. Metallurgical Mechanism Guided Machine Learning to Predict Slag Entrapment Behavior during Ladle Refining with Bottom Blowing. Metall. Mater. Trans. B. 55 (2024), 1869-1880. https://doi.org/10.1007/s11663-024-03072-8.
[3] M-A. Van Ende, I-H. Jung. A Kinetic Ladle Furnace Process Simulation Model: Effective Equilibrium Reaction Zone Model Using FactSage Macro Processing. Metall. Mater. Trans. B. 48 (2016), 28-36. https://doi.org/10.1007/s11663-016-0698-6
[4] Y. Zhang, Y. Ren, L. Zhang. Kinetic study on compositional variations of inclusions, steel and slag during refining process. Metallurgical Research & Technology,115 (2018). https://doi.org/10.1051/metal/2018059.
[5] H. Hu, L. Yang, Y. Guo, F. Chen, S. Wang, F. Zheng, B. Li. Numerical Simulation of Bottom-Blowing Stirring in Different Smelting Stages of Electric Arc Furnace Steelmaking.Metals,11 (2021). https://doi.org/10.3390/met11050799.
[6] J. Li, LF Refining Technology (Metallurgical Industry Press, Beijing, 2009).ISBN: 978-7-5024-4520-1. (in Chinese)
[7] Z. Liu, B. Li, A. Vakhrushev, M. Wu, A. Ludwig. Physical and Numerical Modeling of Exposed Slag Eye in Continuous Casting Mold using Euler–Euler Approach. steel research international,90 (2018). https://doi.org/10.1002/srin.201800117.
[8] K. Krishnapisharody, G. A. Irons. A Model for Slag Eyes in Steel Refining Ladles Covered with Thick Slag. Metall. Mater. Trans. B, 46 (2014), 191-198. https://doi.org/10.1007/s11663-014-0184-y.
[9] S. Chatterjee, K. Chattopadhyay. Physical Modeling of Slag ‘Eye’ in an Inert Gas-Shrouded Tundish Using Dimensional Analysis. Metall. Mater. Trans. B.47 (2015), 508-521. https://doi.org/10.1007/s11663-015-0512-x.
[10] L. Han, X. Li, Y. Liu. Water Model Experiment of 70t Bottom-Blown Argon Ladle. Laboratory Research and Exploration,30 (2011), 29-34. https://kns.cnki.net/kcms2/article/abstract?v=W694F5cljyBRjrq3JEwoPR5aHVSxP-UU1zmFY-T7ChPJyty6SXfM10QprrnyybgENz7KnhWgNVG3X4bBmvIRFB24irrV0WSvS5wJoL62Y_kwzgLCbtElCgpf-acDk_fqa4qdy8fLF0fcArIBC6hscZPYGVAWcz7yYqY3W2MNxYyoDIeVLTaBVQTBiuyO8c-Z&uniplatform=NZKPT&language=CHS (in Chinese).
[11] Amaro-Villeda, A. M., Ramirez-Argaez, M. A., & Conejo, A. N. (2014). Effect of Slag Properties on Mixing Phenomena in Gas-stirred Ladles by Physical Modeling. ISIJ International, 54(1), 1-8. doi:10.2355/isijinternational.54.1
[12] Linmin, L., Zhongqiu, L., Baokuan, L., Hiroyuki, M., & Fumitaka, T. (2015). Water Model and CFD-PBM Coupled Model of Gas-Liquid-Slag Three-Phase Flow in Ladle Metallurgy. ISIJ International, 55(7), 1337-1346. doi:10.2355/isijinternational.55.1337.
[13] Jardón-Pérez, L. E., González-Morales, D. R., Trápaga, G., González-Rivera, C., & Ramírez-Argáez, M. A. (2019). Effect of Differentiated Injection Ratio, Gas Flow Rate, and Slag Thickness on Mixing Time and Open Eye Area in Gas-Stirred Ladle Assisted by Physical Modeling. Metals, 9(5). doi:10.3390/met9050555.
[14] Dipak, M., Palani, D., & Rajagopal, S. (2017). Modeling and Optimisation of Gas Stirred Ladle Systems. ISIJ International, 57(2), 286-295. doi:10.2355/isijinternational.ISIJINT-2015-701.
[15] Jardón Pérez, L. E., Amaro-Villeda, A., Conejo, A. N., González-Rivera, C., & Ramírez-Argáez, M. A. (2017). Optimizing gas stirred ladles by physical modeling and PIV measurements. Materials and Manufacturing Processes, 33(8), 882-890. doi:10.1080/10426914.2017.1401722.
[16] Z. Li, W. Ouyang, Z. Wang, R. Zheng, Y. Bao, C. Gu. Physical Simulation Study on Flow Field Characteristics of Molten Steel in 70t Ladle Bottom Argon Blowing Process. Metals,13 (2023). https://doi.org/10.3390/met13040639.
[17] K. Krishnapisharody, G. A. Irons. Modeling of slag eye formation over a metal bath due to gas bubbling. Metall. Mater. Trans. B, 37 (2006), 763-772. https://doi.org/10.1007/s11663-006-0058-z.
[18] M. Eranandhanthan, D. Mazumdar. Modeling of Slag Eye Area in Argon Stirred Ladles.ISIJ Int.,50 (2010), 1622–1631. https://doi.org/10.2355/isijinternational.50.1622.
[19] B. G. Thomas, Q. Yuan, S. Mahmood, R. Liu, R. Chaudhary. Transport and Entrapment of Particles in Steel Continuous Casting. Metall. Mater. Trans. B,45 (2013), 22-35. https://doi.org/10.1007/s11663-013-9916-7.
[20] Amaro-Villeda, A. M., Ramirez-Argaez, M. A., & Conejo, A. N. (2014). Effect of Slag Properties on Mixing Phenomena in Gas-stirred Ladles by Physical Modeling. ISIJ International, 54(1), 1-8. doi:10.2355/isijinternational.54.1.
[21] X. Guo, J. Godinez, N. J. Walla, A. K. Silaen, H. Oltmann, V. Thapliyal, A. Bhansali, E. Pretorius, C. Q. Zhou. Computational Investigation of Inclusion Removal in the Steel-Refining Ladle Process. Processes, 9 (2021). https://doi.org/10.3390/pr9061048.
[22] Z. Tan, Y. Yu, X. Deng, J. Li. Simulation Analysis of Influence of Argon Gas Injection Hole Position on Flow Field in Steel Ladle. Jom, (2024). https://doi.org/10.1007/s11837-024-06415-7.
[23] G. Wang, G. Cheng, Y. Zhang, L. Chen, L. Hui, Q. Wang, H. Cai. Numerical and Physical Simulation of Mixing Process in Argon-Stirred Ladles with Single and Dual Bottom Injection. Jom, (2024). https://doi.org/10.1007/s11837-024-06618-y.
[24] F. Su, L. Fang, Z. Kang, H. Zhu. Numerical Simulation Om Heat Transfer of Multi-Layer Ladle in Empty and Heavy Condition. Front. Heat Mass Transf., 20 (2023).doi:10.5098/hmt.20.14.https://cdn.techscience.cn/uploads/attached/file/20230425/20230425161938_89003.pdf.
[25] Y. Liu, H. Bai, H. Liu, M. Ersson, P. G. Jönsson, Y. Gan. Physical and Numerical Modelling on the Mixing Condition in a 50 t Ladle.Metals,9 (2019). https://doi.org/10.3390/met9111136.
[26] X. Li, B. Li, Z. Liu, R. Niu, Y. Liu, C. Zhao, C. Huang, H. Qiao, T. Yuan. Large Eddy Simulation of Multi-Phase Flow and Slag Entrapment in a Continuous Casting Mold.Metals,9 (2018). https://doi.org/10.3390/met9010007.
[27] W. Liu, H. Tang, S. Yang, M. Wang, J. Li, Q. Liu, J. Liu. Numerical Simulation of Slag Eye Formation and Slag Entrapment in a Bottom-Blown Argon-Stirred Ladle. Metall. Mater. Trans. B, 49 (2018), 2681-2691. https://doi.org/10.1007/s11663-018-1308-6.
[28] L. Wang, J. Yang, Y. Liu. Numerical Investigation for Effects of Polydisperse Argon Bubbles on Molten Steel Flow and Liquid Slag Entrapment in a Slab Continuous Casting Mold.Metall. Mater. Trans. B, 53 (2022), 3707-3721. https://doi.org/10.1007/s11663-022-02634-y.
[29] X. Li, B. Li, Z. Liu, D. Wang, T. Qu, S. Hu, C. Wang, Gao R. Evaluation of Slag Entrapment in Continuous Casting Mold Based on the LES-VOF-DPM Coupled Model. Metall. Mater. Trans. B, 52 (2021), 3246-3264. https://doi.org/10.1007/s11663-021-02253-z.
[30] G. Chen, Q. Wang, S. He. Assessment of an Eulerian multi-fluid VOF model for simulation of multiphase flow in an industrial Ruhrstahl–Heraeus degasser. Metallurgical Research & Technology, 116 (2019).doi: 10.1051/metal/2019049.
[31] A. Gupta, R. Kumar, R. K. Singh. Assessment of Critical Vortexing Height to Prevent Slag Entrapment During Tundish Teeming. Metals and Materials International, 28 (2021), 1246-1256. https://doi.org/10.1007/s12540-021-01014-6.
[32] X. Zhao, J. Zhang, F. Gao, X. Wang, L. Wang. Transient simulation of slag entrapment in a tundish. Journal of Physics: Conference Series, 2390 (2022).doi: 10.1088/1742-6596/2390/1/012080.
[33] Aydogdu, M. (2023). Analysis of the effect of rigid vegetation patches on the hydraulics of an open channel flow with Realizable k-ε and Reynolds stress turbulence models. Flow Measurement and Instrumentation, 94. doi:10.1016/j.flowmeasinst.2023.102477.
[34] R. D. Morales, S. Garcia-Hernandez, J. D. J. Barreto, A. Ceballos-Huerta, I. Calderon-Ramos, E. Gutierrez. Multiphase Flow Modeling of Slag Entrapment During Ladle Change-Over Operation. Metall. Mater. Trans. B, 47 (2016), 2595-2606.
https://doi.org/10.1007/s11663-016-0663-4.
[35] A. Srivastava, K. Chattopadhyay. Macroscopic Mechanistic Modeling for the Prediction of Mold Slag Exposure in a Continuous Casting Mold. Metall. Mater. Trans. B, 53 (2022), 1018-1035. https://doi.org/10.1007/s11663-021-02396-z.
[36] Xufeng, Q. (2021). Study on gas-liquid two phase flow behavior under effects of annular gas curtain and swirling flow at tundish nozzle. (Doctoral dissertation, Wuhan University of Science and Technology, Wuhan, Hubei, P.R. China). Retrieved from https://link.cnki.net/doi/10.27380/d.cnki.gwkju.2021.000533. (in Chinese)
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.
