Computational modeling of anodic current distribution and anode shape shift in aluminium reduction cells

  • Yujie Xu Center South University
  • Jie Li Center South University
  • Hongliang Zhang Center South University
  • Yanqing Lai Center South University

Abstract


In aluminium reduction cells, the profile of a new carbon anode changes with time before reaching a steady state shape, since the anode consumption rate, depending on the current density normal to anode surfaces, varies from one region to another. In this paper, a two-dimension model based on Laplace equation and Tafel equation was built up to calculate the secondary current distribution, and the shift of anode shape with time was simulated with arbitrary Lagrangian-Eulerian method. The time it takes to reach the steady shape for the anode increases with the enlargement of the width of the channels between the anodes or between the anode and the sidewall. This time can be shortened by making a sloped bottom or cutting off the lower corners of the new anode. Forming two slots in the bottom surface increases the anodic current density at the underside of the anode, but leads to the enlargement of the current at the side of the anode.

Author Biographies

Yujie Xu, Center South University
Ph.D. candidate of the school of metallurgy and environment
Jie Li, Center South University
Professor of the school of metallurgy and environment
Hongliang Zhang, Center South University
associate professor of the school of metallurgy and environment
Yanqing Lai, Center South University
professor of the school of metallurgy and environment

References

P. A. Solli, T. Haarberg, T. Eggen, E. Skybakmoen, A. Sterten, Light Metals 1994, ed. U. Mannweiler, The Minerals, Metals and Materials Society, Warrendale, PA, USA, 1994, p.195.

R. Odegard, A. Solheim, K. Thovsen, Light Metals 1992, ed. E. R. Cutschall, The Minerals, Metals and Materials Society, Warrendale, PA, USA, 1992, p.457.

K. J. Fraser, D. Billinghurst, K. L. Chen, J. T. Keniry, Light Metals 1989, ed. P. G. Campbell, The Minerals, Metals and Materials Society, Warrendale, PA, USA, 1989, p.219.

A. Piotrowski, S. Pietrzyk, Metall. & Foundry Eng. 16 (1990) 315-337.

J. Zoric, I. Rousar, J. Thonstad, Z. Kuang, J. Appl. Electrochem., 26(8) (1996) 795-802.

W. W. Hyland, Light Metals 1984, ed. J. P. McGeer, Metallurgical Soc of AIME, Warrendale, PA, USA, 1984, p.711.

D. P. Ziegler, Light Metals 1991, ed. E. Rooy, The Minerals, Metals and Materials Society, Warrendale, PA, USA, 1991, p.363.

J. Zoric, I. Rousar, J. Thonstad, J. Appl. Electrochem., 27(8) (1997) 916-927.

J. Zoric, I. Rousar, J. Thonstad, T. Haarberg, J. Appl. Electrochem., 27(8) (1997) 928-938.

J. Zoric, J. Thonstad, T. Haarberg, Metall. Mater. Trans. B, 30(2) (1999) 341-348.

D. K. Ai. Light Metals 1985, ed. H. O. Bohner, Metallurgical Soc of AIME, Warrendale, PA, USA, 1985, p.607.

G. Franca, C. Mesquita, L. Edwards, F. Vogt, Light Metals 2003, ed. P. N. Crepeau, The Minerals, Metals and Materials Society, Warrendale, PA, USA, 2003, p.535.

O. Zikanov, A. Thess, P. A. Davidson, D. P. Ziegler. Metall. Mater. Trans. B, 31(6) (2000) 1541-1550.

J. Thonstad, P Fellner, G. M. Haarberg, J. Hivas, H. Kvande, A. sterten, Aluminium Electrolysis, 3rd edn, Aluminium-Verlag, Dusseldorf, 2001, p.159.

Published
2015/02/24
How to Cite
Xu, Y., Li, J., Zhang, H., & Lai, Y. (2015). Computational modeling of anodic current distribution and anode shape shift in aluminium reduction cells. Journal of Mining and Metallurgy, Section B: Metallurgy, 51(1), 7. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/5563
Section
Original Scientific Paper