Enhancing Corrosion Resistance and Structural Properties of Ni-TiO2 Composite Coatings: The Impact of SDS Surfactant
Abstract
Ni-TiO2 composite coatings are promising materials for enhancing the corrosion resistance and structural properties of steel substrates in various industrial applications. Corrosion remains a major issue for steel components, prompting the need for effective protective coatings. This study investigates the influence of sodium dodecyl sulfate (SDS) surfactant on the structural, electrochemical, mechanical, and morphological properties of Ni-TiO2 composite coatings electrodeposited on BS2 steel. The coatings were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), microhardness testing, and electrochemical techniques, including potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results show that SDS incorporation led to an increase in the crystallite size of the coatings, from 35.92 nm to 80.82 nm, and a significant enhancement in the relative texture coefficient (RTC) along the (200) plane (88.09%). SEM analysis revealed a more compact and uniform surface morphology, with SDS reducing surface porosity from 8.23 × 10-3% to 2.20 × 10-6%. Electrochemical measurements demonstrated a substantial improvement in corrosion resistance, with charge transfer resistance (Rct) increasing from 5.17 kΩ.cm2 to 312.65 kΩ.cm2 and polarization resistance (Rp) rising from 2.5 kΩ.cm2 to 176.38 kΩ.cm2. The microhardness of the coatings decreased slightly from 256.26 kgf.mm-2 to 217.22 kgf.mm⁻², indicating a trade-off between mechanical strength and enhanced corrosion protection. These findings highlight the potential of SDS as a valuable additive for optimizing Ni-TiO2 composite coatings, although further research is needed to explore the impact of SDS concentration, long-term durability, and the performance of these coatings in more aggressive environments.
References
[2] Y. Sun et al., The dual nature of Cu content on the corrosion resistance of low alloy steels in sulfuric acid: A time-dependent reversal of corrosion resistance, Corrosion Science 224 (2023) pages 111486, doi:10.1016/J.CORSCI.2023.111486.
[3] H. Cheng et al., Microstructure and corrosion resistance properties of (FeCoNi)86Al7Ti7 high-entropy alloy via different aging time, Corrosion Science 226 (2024) pages 111670, doi:10.1016/J.CORSCI.2023.111670.
[4] L. Chen et al., Interaction between silty sand and temperature towards corrosion behavior of carbon steel in CO2 environment, Corrosion Science 224 (2023) pages 111522, doi:10.1016/J.CORSCI.2023.111522.
[5] Z. Zou et al., Corrosion resistance of multistep doped graphene oxide/lanthanum-based/silane composite coatings on the magnesium alloys, Molecular Crystals and Liquid Crystals (2023), doi:10.1080/15421406.2023.2204562.
[6] L. Faride, B. T. Hachemi, and G. T. Elhachmi, Characterization of nano-crystalline NiP alloy coatings electrodeposited at various current densities, Iranian Journal of Materials Science and Engineering 18 (3) (2021) pages 1–7, doi:10.22068/ijmse.2237.
[7] F. Jiang et al., Temperature dependence of deposition behavior and corrosion resistance of zinc coatings electroplated on copper substrates from ethaline electrolyte, Chemical Papers 77 (6) (2023) pages 3201–3212, doi:10.1007/S11696-023-02697-4/TABLES/1.
[8] Y. Wang et al., Preparation and Corrosion Resistance of Chromium Carbide Coating on Graphite by Disproportionation Reaction in Molten Salt, Journal of Materials Engineering and Performance 32 (15) (2022) pages 6725–6737, doi:10.1007/S11665-022-07600-Y/TABLES/4.
[9] S. Cihangir, Greening Industrially Applied Toxic Cadmium Plating with γ-Ni2Zn11 Alloy in Deep Eutectic Solvents: Promising Electroplating Efficiency and Chemical Corrosion Resistance, Advanced Engineering Materials (2023) pages 2300731, doi:10.1002/ADEM.202300731.
[10] J. Zou et al., Study on Corrosion Protection of Q235 Steel in Simulated Soil Pore Solution by Different Electrodeposited Coatings, International Journal of Electrochemical Science 17 (12) (2022) pages 2212112, doi:10.20964/2022.12.107.
[11] M. Wang et al., Pulse Electrodeposited Super-Hydrophobic Ni-Co/WS2 Nanocomposite Coatings with Enhanced Corrosion-Resistance, Coatings 12 (12) (2022) pages 1897, doi:10.3390/COATINGS12121897/S1.
[12] A. R. Shetty and A. C. Hegde, Development of Ni-Co-CNT composite coatings for corrosion protection of mild steel in 5% NaCl, Chemical Data Collections 42 (2022) pages 100953, doi:10.1016/J.CDC.2022.100953.
[13] M. Salehi et al., The role of TiO2 nanoparticles on the topography and hydrophobicity of electrodeposited Ni-TiO2 composite coating, Surface Topography: Metrology and Properties 8 (2) (2020) pages 025008, doi:10.1088/2051-672X/AB870A.
[14] M. Salehi, M. Mozammel, and S. M. Emarati, Superhydrophobic and corrosion resistant properties of electrodeposited Ni-TiO2/TMPSi nanocomposite coating, Colloids and Surfaces A: Physicochemical and Engineering Aspects 573 (2019) pages 196–204, doi:10.1016/J.COLSURFA.2019.04.024.
[15] V. Suresh and A. Jegan, Experimental studies on wear and corrosion resistance of pulse electrodeposited Ni-TiO2 nanocomposite coatings on AISI 304 stainless steel, Materials Research Express 9 (12) (2022), doi:10.1088/2053-1591/acabb2.
[16] G. Zhao, M. Zhao, and W. Zhang, Preparation of Ni-TiO2 Composite Coatings on Q390E Steel by Pulse Electrodeposition and their Photocatalytic and Corrosion Resistance Properties, International Journal of Electrochemical Science 17 (8) (2022): pages 220819, doi:10.20964/2022.08.18.
[17] Y. Li and Y. Zhu, Electrodeposition of Ni-W/TiO2 Composite Coatings on Q345 Pipeline Steel and their Corrosion Resistance and Anti-fouling Performance in Simulated Oilfield Wastewater, International Journal of Electrochemical Science 17 (7) (2022): pages 220727, doi:10.20964/2022.07.13.
[18] V. S. Protsenko et al., Electrochemical Corrosion Behavior of Ni–TiO2 Composite Coatings Electrodeposited from a Deep Eutectic Solvent-Based Electrolyte, Coatings 2022, Vol. 12, Page 800 12 (6) (2022): pages 800, doi:10.3390/COATINGS12060800.
[19] P. Pandian et al., Effect of sodium dodecyl sulfate surfactant on the surface properties of electroless NiP-TiO2-ZrO2 composite coatings on magnesium AZ91D substrate, Arabian Journal of Chemistry 16 (9) (2023): pages 105028, doi:10.1016/J.ARABJC.2023.105028.
[20] F. Doğan et al., Structural, mechanical, and tribological studies of Ni-B-TiN composite coating: effect of SDS concentration, Journal of Adhesion Science and Technology 37 (6) (2023): pages 1010–1033, doi:10.1080/01694243.2022.2060784.
[21] D. Ning et al., Effect of surfactants on the electrodeposition of Cu-TiO2 composite coatings prepared by jet electrodeposition, Journal of Alloys and Compounds 777 (2019): pages 1245–1250, doi:10.1016/J.JALLCOM.2018.11.077.
[22] E. Budi et al., Electrodeposited Ni-TiAlN Composite Coating on Tungsten Carbide: Effect of Surfactant Concentration on Physical and Mechanical Properties, IOP Conference Series: Materials Science and Engineering 384 (1) (2018), doi:10.1088/1757-899X/384/1/012022.
[23] J. Zhao et al., The influence of anionic surfactant (SDS) on the optical, magnetic and capacitive properties of NiO nanocrystals via gas-liquid diffusion synthesis, Materials Science and Engineering: B 299 (2024): pages 116970, doi:10.1016/J.MSEB.2023.116970.
[24] I. M. Lin et al., Photonic Crystal Reflectors with Ultrahigh Sensitivity and Discriminability for Detecting Extremely Low-Concentration Surfactants, ACS Applied Materials and Interfaces 15 (38) (2023): pages 45249–45259, doi:10.1021/ACSAMI.3C06946/SUPPL_FILE/AM3C06946_SI_003.PDF.
[25] A. Ahmad et al., Role of XRD for nanomaterial analysis, Nanomedicine Manufacturing and Applications (2021): pages 149–161, doi:10.1016/B978-0-12-820773-4.00008-1.
[26] M. H. Sarafrazi and M. Alizadeh, Improved characteristics of Ni-electrodeposited coatings via the incorporation of Si and TiO2 particulate reinforcements, Journal of Alloys and Compounds 720 (2017): pages 289–299, doi:10.1016/J.JALLCOM.2017.05.223.
[27] S. A. Lajevardi and T. Shahrabi, Effects of pulse electrodeposition parameters on the properties of Ni-TiO 2 nanocomposite coatings, Applied Surface Science 256 (22) (2010): pages 6775–6781, doi:10.1016/J.APSUSC.2010.04.088.
[28] E. Guettaf Temam, H. Ben Temam, and S. Benramache, Surface morphology and electrochemical characterization of electrodeposited Ni-Mo nanocomposites as cathodes for hydrogen evolution, Chinese Physics B 24 (10) (2015), doi:10.1088/1674-1056/24/10/108202.
[29] A. Mekkaoui et al., A New Study on the Effect of Pure Anatase TiO2 Film Thickness on Gentian Violet Photodegradation Under Sunlight: Considering the Effect of Hole Scavengers, Trends in Sciences 20 (1) (2023): pages 1–10, doi:10.48048/tis.2023.3766.
[30] E. Guettaf Temam et al., Photocatalytic activity of Al/Ni doped TiO2 films synthesized by sol-gel method: Dependence on thickness and crystal growth of photocatalysts, Surfaces and Interfaces 31 (May) (2022): pages 102077, doi:10.1016/j.surfin.2022.102077.
[31] F. Doğan et al., Structural, mechanical, and tribological studies of Ni-B-TiN composite coating: effect of SDS concentration, Journal of Adhesion Science and Technology 37 (6) (2023): pages 1010–1033, doi:10.1080/01694243.2022.2060784.
[32] R. Bhogal and J. Kapoor, Tribological properties in electrodeposition of Ni-TiO 2 composite coating on tungsten carbide cutting tool, , doi:10.15740/HAS/ETI/5.1and2/38-43.
[33] B. Saadi, S. Rahmane, and E. G. Temam, Structural, optical and electrical properties of spray deposited indium-doped Cr2O3 thin films, Journal of Optics (India) (0123456789) (2023), doi:10.1007/s12596-023-01252-4.
[34] C. M. P. Kumar, T. V. Venkatesha, and R. Shabadi, Preparation and corrosion behavior of Ni and Ni–graphene composite coatings, Materials Research Bulletin 48 (4) (2013): pages 1477–1483, doi:10.1016/J.MATERRESBULL.2012.12.064.
[35] H. B. Temam and E. G. Temam, Analysis of the co-deposition of Al2O3 particles with nickel by an electrolytic route: The influence of organic additives presence and Al2O3 concentration, AIP Conference Proceedings 1727 (2016): pages 1–9, doi:10.1063/1.4945977.
[36] D. E. Rusu et al., Study of Ni-Tio 2 nanocomposite coating prepared by electrochemical deposition, JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS 12 (12) (2010): pages 2419–2422.
[37] L. Lemya, B. T. Hachemi, and G. T. Elhachmi, Microstructural, surface and electrochemical properties of electrodeposited Ni-WC nanocomposites coatings, Main Group Chemistry 21 (2022): pages 1–10, doi:10.3233/mgc-210146.
[38] C. M. P. Kumar et al., Electrodeposition Based Preparation of Zn–Ni Alloy and Zn–Ni–WC Nano-Composite Coatings for Corrosion-Resistant Applications, Coatings 2021, Vol. 11, Page 712 11 (6) (2021): pages 712, doi:10.3390/COATINGS11060712.
[39] M. Sabri, A. A. Sarabi, and S. M. Naseri Kondelo, The effect of sodium dodecyl sulfate surfactant on the electrodeposition of Ni-alumina composite coatings, Materials Chemistry and Physics 136 (2–3) (2012): pages 566–569, doi:10.1016/J.MATCHEMPHYS.2012.07.027.
[40] S. Pinate, P. Leisner, and C. Zanella, Electrocodeposition of Nano-SiC Particles by Pulse-Reverse Under an Adapted Waveform, Journal of The Electrochemical Society 166 (15) (2019): pages D804–D809, doi:10.1149/2.0441915JES/XML.
[41] J. C. Anderson et al., Materials Science (Boston, MA: Springer US, 1990).
[42] Shan Le Wang and L. E. Murr, Effect of prestrain and stacking-fault energy on the application of the Hall-Petch relation in fcc metals and alloys, Metallography 13 (3) (1980): pages 203–224, doi:10.1016/0026-0800(80)90001-4.
[43] D. Ahmadkhaniha and C. Zanella, The Effects of Additives, Particles Load and Current Density on Codeposition of SiC Particles in NiP Nanocomposite Coatings, Coatings 2019, Vol. 9, Page 554 9 (9) (2019): pages 554, doi:10.3390/COATINGS9090554.
[44] E. G. Temam et al., The influence of Arabic gum on the catalytic properties of Ni-Mo alloy coatings to intensify hydrogen evolution reaction, Anti-Corrosion Methods and Materials 64 (6) (2017): pages 580–587, doi:10.1108/ACMM-10-2016-1722.
[45] F. Salehtash, H. Banna Motejadded Emrooz, and M. Jalaly, An Investigation on the Adsorption Behavior of a Mesoporous Silica Synthesized by a Surfactant-assisted Method in an Acidic Media, Iranian Journal of Materials Science and Engineering 15 (2) (2018): pages 48–56, doi:10.22068/IJMSE.15.2.48.
[46] Y. A. Chien et al., High strength Ni matrix TiO2 composites by supercritical CO2 assisted Co-electrodeposition with different sizes of TiO2 particle, Micro and Nano Engineering 20 (2023): pages 100219, doi:10.1016/J.MNE.2023.100219.
[47] E. Rosolymou et al., Electrodeposition of Photocatalytic Sn–Ni Matrix Composite Coatings Embedded with Doped TiO2 Particles, Coatings 2020, Vol. 10, Page 775 10 (8) (2020): pages 775, doi:10.3390/COATINGS10080775.
[48] D. Ning et al., Effect of surfactants on the electrodeposition of Cu-TiO2 composite coatings prepared by jet electrodeposition, Journal of Alloys and Compounds 777 (2019): pages 1245–1250, doi:10.1016/J.JALLCOM.2018.11.077.
[49] T. R. Tamilarasan et al., Effect of surfactants on the coating properties and corrosion behaviour of Ni–P–nano-TiO2 coatings, Surface and Coatings Technology C (276) (2015): pages 320–326, doi:10.1016/J.SURFCOAT.2015.07.008.
[50] Z. Pan et al., Effect of Hf addition on microstructural evolution and corrosion behavior of nickel-based alloys in hydrochloric acid, Corrosion Science 224 (2023): pages 111507, doi:10.1016/J.CORSCI.2023.111507.
[51] D. Jullian et al., Internal oxidation of austenitic Fe-Ni-Cr alloys at high temperatures: Deduction of oxygen permeability and the influence of carbon-bearing gases, Corrosion Science 224 (2023): pages 111465, doi:10.1016/J.CORSCI.2023.111465.
[52] L. Cao et al., The Tribocorrosion and Corrosion Properties of Thermally Oxidized Ti6Al4V Alloy in 0.9 wt.% NaCl Physiological Saline, Coatings 2018, Vol. 8, Page 285 8 (8) (2018): pages 285, doi:10.3390/COATINGS8080285.
[53] B. Zeybek and E. Aksun, Electrodeposition of poly(N-methylpyrrole) on stainless steel in the presence of sodium dodecylsulfate and its corrosion performance, Progress in Organic Coatings Complete (81) (2015): pages 1–10, doi:10.1016/J.PORGCOAT.2014.12.011.
[54] F. C. Walsh, C. T. J. Low, and J. O. Bello, Influence of surfactants on electrodeposition of a Ni-nanoparticulate SiC composite coating, Transactions of the IMF 93 (3) (2015): pages 147–156, doi:10.1179/0020296715Z.000000000237.
[55] W. Tian et al., The failure behaviour of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure, Corrosion Science Complete (86) (2014): pages 81–92, doi:10.1016/J.CORSCI.2014.04.038.
[56] M. C. De Oliveira et al., Corrosion behavior of API 5L X65 steel subject to plastic deformation, Journal of Materials Research and Technology 7 (3) (2018): pages 314–318, doi:10.1016/J.JMRT.2018.02.006.
[57] W. Wu et al., Electrochemical Investigation of Corrosion of X80 Steel under Elastic and Plastic Tensile Stress in CO2 Environment, Metals 2018, Vol. 8, Page 949 8 (11) (2018): pages 949, doi:10.3390/MET8110949.
[58] A. Singh et al., The effect of an N-heterocyclic compound on corrosion inhibition of J55 steel in sweet corrosive medium, New Journal of Chemistry 43 (16) (2019): pages 6303–6313, doi:10.1039/C9NJ00356H.
[59] N. A. Ismail, R. A. Shakoor, and R. Kahraman, Corrosion inhibition performance of developed epoxy coatings containing carbon nanocapsules loaded with diethylenetriamine, Progress in Organic Coatings 183 (2023): pages 107716, doi:10.1016/J.PORGCOAT.2023.107716.
[60] Y. Fan et al., Polarization Resistance-Free Mn3O4-Based Electrocatalysts for the Oxygen Reduction Reaction, ChemElectroChem 5 (14) (2018): pages 2010–2018, doi:10.1002/CELC.201800477.
[61] M. Yang et al., Reflectance and polarization characteristics of different coating materials, Procedia Computer Science 147 (2019): pages 300–306, doi:10.1016/J.PROCS.2019.01.268.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.
