Antimony obtaining by hydrometallurgy - Emphasis on recovery from leach solutions

Keywords: antimony recovery, electrowinning, hydrolysis and conversion, precipitation and crystallization, liquid-liquid extraction, ion exchange

Abstract


Antimony (Sb) is listed as a critical raw material in both Europe and the USA. Pyrometallurgical and hydrometallurgical methods are used for its recovery from raw sources. Hydrometallurgy is considered a suitable technology when Sb sources are low-grade ores or technogenic waste. After a brief introduction to the Sb species present in pregnant leach solutions (PLS) obtained by using different leaching reagents, this paper presents various methods for recovering Sb from PLS produced in the leaching hydrometallurgical stage. The discussion covers antimony recovery by hydrolysis and conversion, selective precipitation, crystallization, electrowinning, replacement, liquid-liquid extraction and ion exchange. Factors affecting the effectiveness of these processes and the recent attempts to improve these technologies are presented. Finally, possible future research directions are outlined.

References

[1] C.G. Anderson, The metallurgy of antimony, Chemie der Erde, 72 (2012) S4 3–8. http://dx.doi.org/10.1016/j.chemer.2012.04.001.
[2] S. Dembele, A. Akcil, S. Panda, Technological trends, emerging applications and metallurgical strategies in antimony recovery from stibnite, Minerals Engineering, 175 (2022) 107304. https://doi.org/10.1016/j.mineng.2021.107304.
[3] B.A. McNulty, S.M. Jowitt, I. Belousov, The importance of geology in assessing by- and co product metal supply potential; A case study of antimony, bismuth, selenium, and tellurium within the copper production stream, Economic Geology, 117(6) (2022) 1367–1385. https://doi.org/10.5382/econgeo.4919.
[4] J. Segura-Salazar, P.R. Brito-Parada, Stibnite froth flotation: a critical review, Minerals Engineering, 163 (2021) 106713. https://doi.org/10.1016/j.mineng.2020.106713.
[5] P.A. Nishad, A. Bhaskarapillai, Antimony, a pollutant of emerging concern: A review on industrial sources and remediation technologies, Chemosphere, 277 (2021) 130252. https://doi.org/10.1016/j.chemosphere.2021.130252.
[6] M.L.C.M. Henckens, P.P.J. Driessen, E. Worrell, How can we adapt to geological scarcity of antimony? Investigation of antimony’s substitutability and of other measures to achieve a sustainable use, Resources, Conservation & Recycling, 108 (2016) 54–62. https://doi.org/10.1016/j.resconrec.2016.01.012.
[7] Y. Zhang, C. Wang, B. Ma, X. Jie, P. Xing, Extracting antimony from high arsenic and gold-containing stibnite ore using slurry electrolysis, Hydrometallurgy, 186 (2019) 284–291. https://doi.org/10.1016/j.hydromet.2019.04.026.
[8] R. Nie, M. Hu, A.M. Risqi, Z. Li, S.I. Seok, Efficient and stable antimony selenoiodide solar cells, Advanced Science, 8(8) (2021) 2003172. https://doi.org/10.1002/advs.202003172.
[9] Y. Itzhaik, T. Bendikov, D. Hines, P.V. Kamat, H. Cohen, G. Hodes, Band diagram and effects of the KSCN treatment in TiO2/Sb2S3/CuSCN ETA, The Journal of Physical Chemistry C, 120(1) (2016) 31–41. https://doi.org/10.1021/acs.jpcc.5b09233.
[10] R. Parize, A. Katerski, I. Gromyko, L. Rapenne, H. Roussel, E. Kärber, E. Appert, M. Krunks, V. Consonni, ZnO/TiO2/Sb2S3 core-shell nanowire heterostructure for extremely thin absorber solar cells, The Journal of Physical Chemistry C, 121(18) (2017) 9672–9680. https://doi.org/10.1021/acs.jpcc.7b00178.
[11] H. Zhang, S. Yuan, H. Deng, M. Ishaq, X. Yang, T. Hou, U.A. Shah, H. Song, J. Tang, Controllable orientations for Sb2S3 solar cells by vertical VTD method, Progress in Photovoltaics: Research and Applications, 28(8) (2020) 823–832. https://doi.org/10.1002/pip.3278.
[12] X. Zhou, Z. Zhang, P. Yan, Y. Jiang, H. Wang, Y. Tang, Sulfur-doped reduced graphene oxide/Sb2S3 composite for superior lithium and sodium storage, Materials Chemistry and Physics, 244 (2020) 122661. https://doi.org/10.1016/j.matchemphys.2020.122661.
[13] S. Moolayadukkam, K.A. Bopaiah, P.K. Parakkandy, S. Thomas, Antimony (Sb)-Based Anodes for Lithium–Ion Batteries: Recent Advances, Condensed Matter, 7 (2022) 27. DOI https://doi.org/10.3390/condmat7010027.
[14] H. Hwang, H. Seong, S.Y. Lee, J.H. Moon, S.K. Kim, J.B. Lee, Y. Myung, C.W. Na, J. Choi Synthesis of Sb2S3 NRs@rGO Composite as High-Performance Anode Material for Sodium-Ion Batteries, Materials, 14 (2021) 7521. https://doi.org/10.3390/ma14247521.
[15] Y. Wu, W. Shuang, Y. Wang, F. Chen, S. Tang, X‑L. Wu, Z. Bai, L. Yang, J. Zhang, Recent Progress in Sodium‑Ion Batteries: Advanced Materials, Reaction Mechanisms and Energy Applications, Electrochemical Energy Reviews, 7 (2024) 17. https://doi.org/10.1007/s41918-024-00215-y.
[16] C.G. Anderson, Hydrometallurgically treating antimony-bearing industrial wastes, Journal of metals, JOM, 53 (2001) 18–20. https://doi.org/10.1007/s11837-001-0156-y.
[17] S. Dembele, A. Akcil, S. Panda, Investigation of the characteristics of stibnite (Sb2S3) flotation tailings and extraction of critical metals (Sb and As): Optimization and scale-up, Minerals Engineering, 216 (2024) 108883. https://doi.org/10.1016/j.mineng.2024.108883.
[18] L. Ye, Z. Ouyang, Y. Chen, Y. Chen, Ferric chloride leaching of antimony from stibnite, Hydrometallurgy, 186 (2019) 210–217. https://doi.org/10.1016/j.hydromet.2019.04.021.
[19] L. Ye, Z. Ouyang, Y. Chen, H. Wang, L. Xiao, S. Liu, Selective separation of antimony from a Sb-Fe mixed solution by hydrolysis and application in the hydrometallurgical process of antimony extraction, Separation and Purification Technology, 228 (2019) 115753. https://doi.org/10.1016/j.seppur.2019.115753.
[20] E. Díaz Gutiérrez, J.A. Maldonado Calvo, J.M. Gallardo Fuentes, A. Paúl Escolano, Effect of pH hydrolysis on the recovery of antimony from spent electrolytes from copper production, Materials, 16 (2023) 3918. https://doi.org/10.3390/ma16113918.
[21] Q.-H. Tian, Y.-T. Xin, L. Yang, X.-H. Wang, X.-Y. Guo, Theoretical simulation and experimental study of hydrolysis separation of SbCl3 in complexation–precipitation system, Transactions of Nonferrous Metals Society of China, 26(10) (2016) 2746–2753. https://doi.org/10.1016/S1003-6326(16)64370-4.
[22] H. Hashimoto, T. Nishimura, Y. Umetsu, Hydrolysis of Antimony(III)-Hydrochloric Acid Solution at 25 oC, Materials Transactions, 44(8) (2003) 624 - 1629. https://www.jstage.jst.go.jp/article/matertrans/44/8/44_8_1624/_pdf
[23] A.I.I. Ibrahim, M. Aboelgamel, K.K. Soylu, S. Top, S. Kursunoglu, M. Altiner, Production of high-grade antimony oxide from smelter slag via leaching and hydrolysis process, Separation and Purification Technology, 354 (2025) 129355. https://doi.org/10.1016/j.seppur.2024.129355.
[24] L. Meng, S.-G. Zhang, D.-A. Pan, B. Li, J.-J. Tian, A.A. Volinsky, Antimony recovery from SbCl5 acid solution by hydrolysis and aging, Rare Metals, 34(6) (2015) 436–439 https://10.1007/s12598-015-0480-y.
[25] W. Stumm, J.J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters - 3rd Edition. John Wiley & Sons, New York 2012, p. 365.
[26] X. Cai, B. Wei, J. Han, Y. Li, Y. Cui, G. Sun, Solvent extraction of iron(III) from hydrochloric acid solution by N,N,N′,N′-tetra-2-ethylhexyldiglycolamide in different diluents, Hydrometallurgy, 164 (2016) 1–6. https://doi.org/10.1016/j.hydromet.2016.04.010.
[27] D. Luo, M. Fernández de Labastida, J.L. Cortina, J. Lopez, Recovery of antimony and bismuth from arsenic-containing waste streams from the copper electrorefining circuit: An example of promoting critical metals circularity from secondary resources, Journal of Cleaner Production, 415 (2023) 137902. https://doi.org/10.1016/j.jclepro.2023.137902.
[28] D. Luo, J. Lopez, J.L. Cortina, Separation process for the production of high-purity antimony and bismuth oxides from copper electrorefining circuit wastes: The relevance of the redox control, Separation and Purification Technology, 343 (2024) 127137. https://doi.org/10.1016/j.seppur.2024.127137.
[29] J.A. Barragan, C. Ponce de León, J.R. Alemán Castro, A. Peregrina-Lucano, F. Gómez- Zamudio, E.R. Larios-Durán, Copper and antimony recovery from electronic waste by hydrometallurgical and electrochemical techniques, ACS Omega, 5 (2020) 12355–12363. https://dx.doi.org/10.1021/acsomega.0c01100.
[30] Y. Ma, M. Svärd, X. Xiao, J.M. Gardner, R.T. Olsson, K. Forsberg, Precipitation and crystallization used in the production of metal salts for Li-Ion battery materials: a review, Metals, 10(12) (2020) 1609. https://doi.org/10.3390/met10121609.
[31] A. Wikedzi, Å. Sandström, S.A. Awe, Recovery of antimony compounds from alkaline sulphide leachates, International, Journal of Mineral Processing, 152 (2016) 26–35. http://dx.doi.org/10.1016/j.minpro.2016.05.006.
[32] Tz. Yang, QI. Lai, Jj. Tang, G. Chu, Precipitation of antimony from the solution of sodium thioantimonite by air oxidation in the presence of catalytic agents, Journal of Central South University of Technology, 9 (2002) 107–111. https://doi.org/10.1007/s11771-002-0053-8.
[33] T. Yang, S. Rao, W. Liu, D. Zhang, L. Chen, Selective process for extracting antimony from refractory gold ore, Hydrometallurgy, 169 (2017) 571–575. http://dx.doi.org/10.1016/j.hydromet.2017.03.014.
[34] J. Han, Z. Ou, W. Liu, F. Jiao, W. Qin, Recovery of antimony and bismuth from tin anode slime after soda roasting–alkaline leaching, Separation and Purification Technology, 242 (2020) 116789. https://doi.org/10.1016/j.seppur.2020.116789.
[35] R.S. Multani, T. Feldmann, G.P. Demopoulos, Removal of antimony from concentrated solutions with focus on tripuhyite (FeSbO4) synthesis, characterization and stability, Hydrometallurgy, 169 (2017) 263–274. https://doi.org/10.1016/j.hydromet.2017.02.004.
[36] Q. Tian, G. Li, Y. Xin, X. Lv, X. Lv, W. Yu, K.Yan, Comprehensive treatment of acid effluent containing antimony and arsenic by selective reduction and evaporative crystallization, Hydrometallurgy, 195 (2020) 105366. https://doi.org/10.1016/j.hydromet.2020.105366.
[37] L.-K. Wu, Y.-Y. Li, H.-Z. Cao, G.-Q. Zheng, Copper-promoted cementation of antimony in hydrochloric acid system: A green protocol, Journal of Hazardous Materials, 299 (2015) 520–528. http://dx.doi.org/10.1016/j.jhazmat.2015.07.053.
[38] M.H. Morcali, Ö. Küçükoğlu, B.N. Çetiner, S. Aktaş, Non-diaphragm electrodeposition of antimony: effect of process parameters and precipitating agents, Journal of Mining and Metallurgy, Section B: Metallurgy, 58(3) (2022) 461 - 473. https://doi.org/10.2298/JMMB220129027M.
[39] S.A. Awe, Å. Sandström, Electrowinning of antimony from model sulphide alkaline solutions, Hydrometallurgy, 137 (2013) 60-67. https://doi.org/10.1016/j.hydromet.2013.04.006.
[40] S. M. Moosavi Nezhad, The effect of temperature on the electrowinning of antimony from alkaline sulfide solution, Journal of Advanced Materials and Technologies, 9(4) (2021) 47-58. https://doi.org/10.30501/jamt.2021.238557.1102.
[41] S. A. A.Sajadi, Z. Khorablou, M.S.Naeini, Recovery of antimony from acidic and alkaline leaching solution of low-grade antimony ore by electrowinning process, Heliyon, 10 (2024) e35300. https://doi.org/10.1016/j.heliyon.2024.e35300.
[42] V.R. Chithambara Thanu, M. Jayakumar, Electrochemical recovery of antimony and bismuth from spent electrolytes, Separation and Purification Technology, 235 (2020) 116169. https://doi.org/10.1016/j.seppur.2019.
[43] L. Hernéndez-Pérez, J. Carrillo-Abad, E.M. Ortega, V. Pérez-Herranz , M.T. Montañés , M.C. Martí-Calatayud, Voltammetric and electrodeposition study for the recovery of antimony from effluents generated in the copper electrorefining process, Journal of Environmental Chemical Engineering, 11 (2023) 109139. https://doi.org/10.1016/j.jece.2022.109139.
[44] L.A. Santiago-Santiago, J.A. Reyes-Aguilera, M.P. Gonzalez, D. Cholico-Gonzalez, M. Avila-Rodríguez, Separation of Bi(III) and Sb(III) from Cu(II) HCl/H2SO4 mixed media by supported liquid membranes using cyanex 921 as carrier, Industrial & Engineering Chemistry Research, 51(46) (2012) 15184–15192. https://doi.org/10.1021/ie301447x.
[45] M. M. Artzer, J. Bender, Removal of antimony and bismuth from copper electrorefining electrolyte: part II—an investigation of two proprietary solvent extraction extractants, JOM, 70 (2018) 2856–2863. https://doi. org/10.1007/s11837-018-3129-0.
[46] N. Benabdallah, D. Luo, M. Hadj Youcef, J. Lopez, M. Fernández de Labastida, A.M. Sastre, C.A. Valderrama, J.L. Cortina, Increasing the circularity of the copper metallurgical industry: Recovery of Sb(III) and Bi(III) from hydrochloric solutions by integration of solvating organophosphorous extractants and selective precipitation, Chemical Engineering Journal, 453 (2023) 139811. https://doi.org/10.1016/j.cej.2022.139811.
[47] F. Arroyo-Torralvo, A. Rodríguez-Almansa, I. Ruiz, I. González, G. Ríos, C. Fernández-Pereira, L.F. Vilches-Arenas, Optimizing operating conditions in an ion-exchange column treatment applied to the removal of Sb and Bi impurities from an electrolyte of a copper electro-refining plant, Hydrometallurgy, 171 (2017) 285–297. https://doi.org/10.1016/j.hydromet.2017.06.009.
[48] A.I. González de las Torres, M.S. Moats, G. Ríos, A. Rodríguez Almansa, D. Sánchez- Rodas, Removal of Sb impurities in copper electrolyte and evaluation of As and Fe species in an electrorefining plant, Metals, 11 (6) (2021) 902. https://doi.org/10.3390/met11060902.
[49] F. Moghimi, A.H. Jafari, H. Yoozbashizaden, M. Askari, Adsorption behavior of Sb(III) in single and binary Sb(III)−Fe(II) systems on cationic ion exchange resin: Adsorption equilibrium, kinetic and thermodynamic aspects, Transactions of Nonferrous Metals Society of China, 30 (2020) 236−248. https://doi.org/10.1016/S1003-6326(19)65195-2.
Published
2025/12/19
How to Cite
Panayotova, M., & Panayotov, V. (2025). Antimony obtaining by hydrometallurgy - Emphasis on recovery from leach solutions. Journal of Mining and Metallurgy, Section B: Metallurgy, 61(2), 249-266. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/58523
Section
Review Paper