Effect of copper addition on the microstructure, mechanical, thermal, and magnetic properties of Fe-Ni-Cu alloys

  • Serdar Delice Hitit University
  • Hakan Gungunes Hitit University
Keywords: FeNiCu, SEM, Vickers Hardness, DSC, Mössbauer effect.

Abstract


In this study, FeNiCu alloys with two different copper contents were produced by arc melting. The aim was to investigate the effects of Cu content on the microstructural, mechanical, thermal, and Mössbauer properties of the alloys. Microstructures were examined using SEM micrographs. Vickers hardness tests were conducted to evaluate mechanical strength. Thermal behavior was analyzed using DSC. Magnetic characteristics were studied by Mössbauer spectroscopy. SEM analysis showed the presence of martensitic structures in both alloys, with the alloy containing more Cu exhibiting a higher amount of martensite. Hardness increased from 169.1 HV to 190.2 HV as Cu content increased. DSC results confirmed the martensitic transformation. The alloy with higher Cu content showed a higher transformation temperature and greater transformation energy released. Mössbauer spectra indicated the presence of both magnetically ordered and non-ordered phases in both alloys. Hyperfine parameters demonstrated changes in the local atomic environment due to Cu addition. The weak singlet obtained was associated with the FCC phase. The two sextets were attributed to ferromagnetic BCC phases arising from different environments of the Fe atom. The other sextet, with a low internal magnetic field of around 18 T, was ascribed to possible Ni- and/or Cu-rich surroundings of the Fe atom. Overall, increasing Cu in the alloy altered the microstructure, improved hardness, shifted the martensitic transformation temperature, and modified the magnetic hyperfine interactions. These results may aid in designing advanced Fe-based materials for structural and magnetic applications.

References

[1] P. Zhang, L. Li, D. Nordlund, H. Chen, L. Fan, B. Zhang, X. Sheng, Q. Daniel, L. Sun, Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation, Nature Communications, 9(1) (2018) 1–9. https://doi.org/10.1038/s41467-017-02429-9
[2] Y. Geng, X. Lin, Y. Wang, J. Qiang, Y. Wang, C. Dong, Mechanical and magnetic properties of new (Fe,Co,Ni)–B–Si–Ta bulk glassy alloys, Acta Metallurgica Sinica (English Letters), 30(7) (2017) 659–664. https://doi.org/10.1007/s40195-017-0576-5
[3] X. Qi, J. You, J. Zhou, K. Qiu, X. Cui, J. Tian, B. Li, A Review of Fe-Based Amorphous and Nanocrystalline Alloys: Preparations, Applications, and Effects of Alloying Elements, Physica Status Solidi A, 220 (2023) 2300079. https://doi.org/10.1002/pssa.202300079 [4] M.K. Sharma, A. Kumar, K. Kumari, S.-J. Park, N. Yadav, S.-H. Huh, B.-H. Koo, Evidence of hysteresis-free ferromagnetic nature and significant magnetocaloric parameters in FeNi binary alloy, Magnetochemistry, 9(1) (2023) 8. https://doi.org/10.3390/magnetochemistry9010008
[5] B. Aladerah, A. Obeidat, Pressure-dependent magnetic properties of FeNi alloy: theoretical study, Solid State Sciences, 148 (2024) 107437. https://doi.org/10.1016/j.solidstatesciences.2024.107437
[6] F. Meng, Y. Wu, K. Hu, Y. Li, Q. Sun, X. Liu, Evolution and strengthening effects of the heat-resistant phases in Al–Si piston alloys with different Fe/Ni ratios, Materials, 12(16) (2019) 2506. https://doi.org/10.3390/ma12162506
[7] A. Modak, R. Mohan, K. Rajavelu, R. Cahan, T. Bendikov, A. Schechter, Metal–organic polymer-derived interconnected Fe–Ni alloy by carbon nanotubes as an advanced design of urea oxidation catalysts, ACS Applied Materials & Interfaces, 13(7) (2021) 8461–8473. https://doi.org/10.1021/acsami.0c22148
[8] H. Guo, Z. Chen, J. Li, L. Li, Study of Fe/Ni alloy coated carbon fibres prepared by electroplating, Surface Engineering, 35(10) (2019) 841–847. https://doi.org/10.1080/02670844.2018.1475103
[9] M. Kotsugi, H. Maruyama, N. Ishimatsu, N. Kawamura, M. Suzuki, M. Mizumaki, K. Osaka, T. Matsumoto, T. Ohkochi, T. Ohtsuki, Structural, magnetic and electronic state characterization of L1₀-type ordered FeNi alloy extracted from a natural meteorite, Journal of Physics: Condensed Matter, 26(6) (2014) 064206. https://doi.org/10.1088/0953-8984/26/6/064206
[10] H. Jiang, L. Li, R. Wang, K. Han, Q. Wang, Effects of chromium on the microstructures and mechanical properties of AlCoCrxFeNi2.1 eutectic high entropy alloys, Acta Metallurgica Sinica (English Letters), 34(11) (2021) 1565–1573. https://doi.org/10.1007/s40195-021-01303-4
[11] M.B. Shongwe, I.M. Makena, M.M. Ramakokovhu, T. Langa, P.A. Olubambi, Sintering behavior and effect of ternary additions on the microstructure and mechanical properties of Ni–Fe-based alloy, Particulate Science and Technology, 36(5) (2017) 643–654. https://doi.org/10.1080/02726351.2017.1298686
[12] L.Y. Tian, O. Gutfleisch, O. Eriksson, L. Vitos, Alloying effect on the order–disorder transformation in tetragonal FeNi, Scientific Reports, 11 (2021) 5253. https://doi.org/10.1038/s41598-021-84482-5
[13] N. Singh, V. Pandey, G. Srivastava, S. Banerjee, O. Parkash, D. Kumar, γ and α-(Fe,Ni) phase characterization using image processing and effect of phase formation on the P/M Fe(100–x)Nix alloys properties, Materials Chemistry and Physics, 246 (2020) 122794. https://doi.org/10.1016/j.matchemphys.2020.122794
[14] S. Tao, Z. Lu, H. Xie, J. Zhang, X. Wei, Effect of high contents of nickel and silicon on the microstructure and properties of Cu–Ni–Si alloys, Journal of Micromechanics and Molecular Physics, 9 (2022) 046516. https://doi.org/10.1088/2053-1591/ac64ec
[15] T. Waeckerlé, Low nickel content FCC alloys: recent evolution and applications, IEEE Transactions on Magnetics, 46(2) (2010) 326–332. https://doi.org/10.1109/TMAG.2010.2040465
[16] A. Abuchenari, M. Moradi, The effect of Cu-substitution on the microstructure and magnetic properties of Fe-15%Ni alloy prepared by mechanical alloying, Journal of Composites and Compounds, 1(1) (2019) 10–15. https://doi.org/10.29252/jcc.1.1.2
[17] S.S. Ghasemi Banadkouki, S. Mehranfar, H.R. Karimi Zarchi, Effect of Cu addition on hardness and microstructural features of low alloy white cast iron, Materials Research Express, 6 (2018) 026547. https://doi.org/10.1088/2053-1591/aaee48
[18] Y. Chen, Q. Hu, S. Pan, H. Zhang, H. Liu, B. Zhu, X. Liu, W. Liu, Influences of Cu content on the microstructure and strengthening mechanisms of Al–Mg–Si–xCu alloys, Metals, 9(5) (2019) 524. https://doi.org/10.3390/met9050524
[19] Z. Wang, B. Fu, Y. Wang, T. Dong, J. Li, G. Li, X. Zhao, J. Liu, G. Zhang, Effect of Cu content on the precipitation behaviors, mechanical and corrosion properties of as-cast Ti–Cu alloys, Materials, 15(5) (2022) 1696. https://doi.org/10.3390/ma15051696
[20] Y. Li, Y. Wang, B. Lu, W. Yu, H. Wang, G. Xu, Z. Wang, Effect of Cu content and Zn/Mg ratio on microstructure and mechanical properties of Al–Zn–Mg–Cu alloys, Journal of Materials Research and Technology, 19 (2022) 3451–3460. https://doi.org/10.1016/j.jmrt.2022.06.059
[21] R. Wang, G. Qin, E. Zhang, Effect of Cu on martensite transformation of CoCrMo alloy for biomedical application, Journal of Materials Science & Technology, 52 (2020) 127–135. https://doi.org/10.1016/j.jmst.2020.04.012
[22] A. Wederni, M. Ipatov, E. Pineda, J.-J. Suñol, L. Escoda, J. M. González, S. Alleg, M. Khitouni, R. Żuberek, O. Chumak, A. Nabiałek, A. Lynnyk Magnetic properties, martensitic and magnetostructural transformations of ferromagnetic Ni–Mn–Sn–Cu shape memory alloys, Applied Physics A, 126 (2020) 320. https://doi.org/10.1007/s00339-020-03489-3
[23] E. Ghanbari, S.J. Picken, J.H. van Esch, Analysis of differential scanning calorimetry (DSC): determining the transition temperatures, and enthalpy and heat capacity changes in multicomponent systems by analytical model fitting, Journal of Thermal Analysis and Calorimetry, 148 (2023) 12393–12409. https://doi.org/10.1007/s10973-023-12356-1
[24] V.K. Sharma, Z. Homonnay, T. Nishida, J.M. Greneche, ⁵⁷Fe Mössbauer spectrometry to explore natural and artificial nanostructures, Journal of Materials Research, 38 (2023) 925–936.
https://doi.org/10.1557/s43578-023-00937-7
[25] E. Kuzmann, Z. Homonnay, Z. Klencsár, R. Szalay, ⁵⁷Fe Mössbauer spectroscopy as a tool for study of spin states and magnetic interactions in inorganic chemistry, Molecules, 26(4) (2021) 1062. https://doi.org/10.3390/molecules26041062
[26] V.J. Angadi, I.S. Yahia, H.Y. Zahran, M.C. Oliveira, E. Longo, S.P. Kubrin, S.O. Manjunatha, R.A.P. Ribeiro, M.H. Ghozza, Effect of Eu³⁺ on the structural, magnetic and Mössbauer spectroscopy studies of copper ferrite, Journal of Magnetism and Magnetic Materials, 562 (2022) 169789. https://doi.org/10.1016/j.jmmm.2022.169789
[27] D. Ohmer, M. Yi, O. Gutfleisch, B.X. Xu, Phase-field modelling of paramagnetic austenite–ferromagnetic martensite transformation coupled with mechanics and micromagnetics, International Journal of Solids and Structures, 238 (2022) 111365. https://doi.org/10.1016/j.ijsolstr.2021.111365
[28] G.J. Li, E.K. Liu, H.G. Zhang, Y.J. Zhang, J.L. Chen, W.H. Wang, H.W. Zhang, G.H. Wu, S.Y. Yu, Phase diagram, ferromagnetic martensitic transformation and magnetoresponsive properties of Fe-doped MnCoGe alloys, Journal of Magnetism and Magnetic Materials, 332 (2013) 146–150. https://doi.org/10.1016/j.jmmm.2012.12.001
[29] W.M. Xu, G.R. Hearne, S. Layek, D. Levy, M.P. Pasternak, G.Kh. Rozenberg, E. Greenberg, Interplay between structural and magnetic-electronic responses of FeAl₂O₄ to a megabar: site inversion and spin crossover, Physical Review B, 97 (2018) 085120. https://doi.org/10.1103/PhysRevB.97.085120
[30] G. Comas-Vilà, P. Salvador, Accurate ⁵⁷Fe Mössbauer parameters from general Gaussian basis sets, Journal of Chemical Theory and Computation, 17 (2021) 7724–7731. https://doi.org/10.1021/acs.jctc.1c00722
[31] Y.V. Knyazev, M.S. Pavlovskii, T.D. Balaev, S.V. Semenov, S.A. Skorobogatov, A.E. Sokolov, D.M. Gokhfeld, K.A. Shaykhutdinov, The effect of Mn³⁺ substitution on the electric field gradient in a HoFe₁−ₓMnₓO₃ (x = 0–0.7) system, Crystals, 14 (2024) 1025. https://doi.org/10.3390/cryst14121025
Published
2025/12/31
How to Cite
Delice, S., & Gungunes, H. (2025). Effect of copper addition on the microstructure, mechanical, thermal, and magnetic properties of Fe-Ni-Cu alloys. Journal of Mining and Metallurgy, Section B: Metallurgy, 61(3), 283-292. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/60315
Section
Original Scientific Paper