Effects of CaO, MgO, Al2O3 and SiO2 on the carbothermic reduction of synthetic FeCr2O4
Abstract
In order to optimize the current reduction process of chromite, a good knowledge of reduction mechanism involved is required. The basic component in chromite ore is FeCr2O4 with gangue component like MgO and Al2O3. In lack of clear and consistent explanation about the effect of addition on the reduction of FeCr2O4, investigation of synthetic FeCr2O4 with different kind and amount of additions was carried out at 1673K under isothermal mode. Kinetic mechanism was also studied by linear fitting of different kinetic equations. Combined with rate-controlling step, it could be concluded as follows. CaO could enhance the reduction because Ca2+ would replace Fe2+, thus facilitated the ion diffusion in solid phase. Al2O3 had a positive influence as well, since Al3+ could form a solid solution phase with Cr3+ and made Cr3+ reduced more easily. MgO would hinder the reduction due to formation of a more stable phase MgCr2O4. SiO2 would also hamper the Cr metallization because there was a liquid phase formed when Cr3+ was reduced to divalent, which would impede the nucleation of reduction product.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.