A mathematical model for distribution of calcium in silicon by vacuum directional solidification

  • Damin Zheng Kunming University of Science and Technology
  • Kuixian Wei Kunming University of Science and Technology
  • Wenhui Ma Kunming University of Science and Technology
  • Zhilin Sheng China Aluminum Ningxia Energy Group
  • Yongnian Dai Kunming University of Science and Technology

Abstract


Calcium is one of the main impurity elements in silicon. It is a key to remove calcium effectively in the process of polycrystalline silicon ingot production by vacuum directional solidification furnace. Based on the consideration of the theory of segregation, mass transfer and evaporation during vacuum directional solidification process, a mathematical model for distribution of calcium in silicon was proposed to reveal the removal mechanism. In order to confirm the mathematical model, UMG-Si with an initial purity of 99.98 wt. % was used in an industrial scale experiment. Moreover, temperature as a manageable parameter influences evaporation and segregation at the same time. For this reason, the dependences of effective segregation coefficient (keff) and the evaporation coefficient (kE) on temperature were carefully investigated. The results show that the mathematical model agrees with the experimental data and calcium removal is mainly determined by evaporation.

References

A.A. Istratov, T. Buonassisi, M.D. Pickett, M. Heuer, E.R. Weber. Materials Science and Engineering B, 134 (2006) 282-286.

S. K. Sahu, E. Asselin. Hydrometallurgy, 121-124 (2012) 120-125.

A.M. Mitrašinović, R. D’Souza, T.A. Utigard. J. Mater. Proce. Tech, 212 (2012) 78-82.

T. Liu, Z.Y. Dong, Y.W. Zhao, J. Wang, T. Chen, H. Xie, J. Li, H.J. Ni, D.X.Huo. Journal of Crystal Growth, 355 (2012) 145-150.

Y. Wang, X.D. Ma, K. Morita. Metall. Mater. Trans. B, 45 (2014) 334-337.

T. Shimpo, T. Yoshikawa, K. Morita. Metall. Mater. Trans. B, 35 (2004) 277-284.

D.H Liu, X.D Ma, Y.Y Du, T.J. Li, G.L Zhang. Materials research innovations, 14 (5) (2010) 361-364.

K.X. Wei, W.H Ma, B. Yang, D.C. Liu, Y.N. Dai, K. Morita. Vacuum, 85 (2011) 749-754.

S.P. Huang, W.H. Ma, K.X. Wei, S.Y Li, K. Mortia. Vacuum, 86 (2013)12-17.

J.C.S Pires, J. Otubo, A.F.B Braga, P.R. Mei. J. Mater. Proce. Tech, 169 (2005)16-20.

Y. Tan, S.Q Ren, S. Shi, S.T. Wen, D.C Jiang, W. Dong. Vacuum, 99 (2014) 272-276.

K. Morita, T. Miki. Intermetallics, 11 (2003) 1111-1117.

T. Miki, K. Morita, N. Sano. Metall. Mater. Trans. B, 27 (1996) 937-941.

P.R. Mei, S.P. Moreira, A.D.S. Cortes, E. Cardoso, F.C. Marques. J. rene. Sus. energy, 4 (2012) 043118.

S. Martinuzzi, I. Peichaud, O. Palais. Solar energy materials and solar cells, 91 (2007) 1172-1175.

W. Lee, W. Yoon, C. Park. Journal of crystal growth, 312 (2009)146-148.

J. Safarian, M. Tangstad. Metall. Mater. Trans.B, 43 B (2012) 1427-1445.

S.S. Zheng, T.A. Engh, M. Tangstad, X.T. Luo. Separation and Purification Technology, 82 (2011) 128-137.

T. Miki, K. Morita, N. Sano. Metall. Mater. Trans. B, 29 (1998) 1043-1049.

K.X. Wei, W.H. Ma, Y. Zhou, K.Q. Xie, B. Yang, D.C. Liu, Y.N. Dai. Advanced Materials Research, 287-290 (2011) 1521-1525.

Published
2016/12/01
How to Cite
Zheng, D., Wei, K., Ma, W., Sheng, Z., & Dai, Y. (2016). A mathematical model for distribution of calcium in silicon by vacuum directional solidification. Journal of Mining and Metallurgy, Section B: Metallurgy, 52(2), 157-162. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/7248
Section
Original Scientific Paper