Comparison of the corrosion behavior and surface morphology of NiTi alloy and stainless steels in sodium chloride solution

  • Stjepan Kožuh University of Zagreb Faculty of Metallurgy
  • Ladislav Vrsalović University of Split, Faculty of Chemistry and Technology
  • Mirko Gojić University of Zagreb Faculty of Metallurgy
  • Senka Gudić University of Split, Faculty of Chemistry and Technology
  • Borut Kosec University of Ljubljana, Faculty of Natural Sciences and Engineering

Abstract


The corrosion behavior of NiTi alloy and stainless steels (AISI 316L and X2CrNiMoN22-5-3) in 0.9% sodium chloride (0.154 moll-1) solution was investigated using open circuit potential measurements, potentiodynamic polarization and electrochemical impedance spectroscopy measurements. Microstructural analyses before and after electrochemical tests were performed with the scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS). The lowest corrosion current density has NiTi alloy and the extent of the passive range increased in the order AISI 316L stainless steel < NiTi alloy < X2CrNiMoN22-5-3 duplex stainless steel. The oxide film formed on all samples has a double-layer structure consisting of a barrier-type inner layer and a porous outer layer. Oxide films formed on the surface of steels mainly contains iron oxides and chromium oxide, while the surface film of the NiTi alloy mainly contains TiO2 oxide.

References

R. Lahoz, J.A. Puértolas, J. Alloy. Compd., 381 (2004) 130-136.

M. Gojić, L. Vrsalović, S. Kožuh, A.C. Kneissl, I. Anžel, S. Gudić, B. Kosec, M. Kliškić, J. Alloy. Compd., 509 (2011), 9782-9790.

A. Creuziger, W.C. Crone, Acta Mater., 56 (2008) 518-526.

G. Manivasagam, D. Dhinasekaran, A. Rajamanickam, Recent Patents on Corrosion Science, 2 (2010) 40-54.

M. Conradi, P.M. Schon, A. Kocijan, M. Jenko, G.J. Vancso, Mater. Chem. Phys., 130 (2011) 708-713.

I. Gurappa, Mater. Charact., 49 (2002) 73-79.

L. Tan, R.A. Dodd, W.C. Crone, Biomaterials, 24 (2003) 3931-3939.

S.A. Shabalovskaya, G.C. Rondelli, A.L. Undisz, J.W. Anderegg, T.D. Burleigh, M.E. Rettenmayr, Biomaterials, 30 (2009) 3662-3671.

S.A. Shabalovskaya, H. Tian, J.W. Anderegg, D.U. Schryvers, W.U. Carroll, J.V. Humbeeck, Biomaterials, 30 (2009) 468-477.

A. Shahryari, S. Omanović, J.A. Szpunar, Mat. Sci. Eng. C., 28 C (2008) 94-106.

I. Juraga, V. Šimunović, Đ. Španiček, METABK, 46 (2007) 185-189.

H. Kerosuo, G. Moe, E. Kleven, Angle Orthod., 2 (1995) 111-116.

B. Guyuron, C. Lasa, Plast. Reconstr. Surg., 89 (1992) 540-542.

J. Ryhanen, E. Niemi, W. Serlo, E. Niemela, P. Sandvik, H. Pernu, T. Salo, J. Biomed. Mat. Res., 35 (1997) 451-457.

H. Kim, J.W. Johnson, Angle Orthod., 69 (1999) 39-44.

R. Koster, D. Vieluf, M. Kiehn, M. Sommerauer, J. Kahler, S. Baldus, T. Meinertz, C.W. Hamm, Lancet, 356 (2000) 1895-1897.

M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci., 54 (2009) 397-425.

M.L. Pereira, A. Silva, R. Tracana, G.S. Carvalho, Cytobios, 77 (1994) 73-80.

N.K. Veien, E. Bochhorst, T. Hattel, G. Laurberg, Contact Dermatitis, 30 (1994) 210-213.

T.P. Chaturvedi, http://orthocj.com/journal/uploads/2008/01/0054_en.pdf.

ASTM Standard F746-87. Standard test method for pitting and crevice corrosion of metallic surgical implant materials, West Conshohocken, PA: ASTM International; 1987 (Reproved 1999).

T. Hu, C.L. Chu, Y.C. Xin, S.L. Wu, K.W.K. Yeung, P.K. Chu, J. Mater. Res., 25 (2) (2010) 350-358.

K.Y. Chiu, F.T. Cheng, H.C. Man, Surf. Coat. Tech., 200 (2006) 6054-6061.

K. Endo, M. Suzuki, H. Ohno, Dent. Mater. J., 19 (2000) 34-49.

G. Rondelli, B. Vicentini, Biomaterials, 23 (2002) 639-644.

J. Pan, D. Thierry, C. Leygraf, Electrochim. Acta, 41 (1996) 1143-1153.

N. Figueira, T.M. Silva, M.J. Carmezim, J.C.S. Fernandes, Electrochim. Acta, 54 (2009) 921-926.

R. Venugopalan, J.J. Weimer, M.A. George, L.C. Lucas, Biomaterials, 21 (2000) 1669-1677.

I.C. Lavos-Valereto, S. Wolynec, I. Ramires, A.C. Guastaldi, I. Costa, J. Mater. Sci.-Mater. Med, 15 (2004) 55-59.

C.R. Clayton, I. Olefjord, Passivity of austenitic stainless steels, in: P. Marcus, J. Oudar, (Eds.), Corrosion Mechanism Theory and Practice, Marcel Dekker, New York, 1995, p. 175-199.

C.A. Della Rovere, J.H. Alano, R. Silva, P.A.P. Nascente, J. Otubo, S.E. Kuri, Corr. Sci., 57 (2012) 154-161.

I.D. Raistrick, D.R. Franceschetti, J.R. Macdonald, Theory, in: E. Barsoukov, J.R. Macdonald (Eds.), Impedance Spectroscopy, second ed., J. Wiley & Sons, Inc., New Yersey, 2005.

D. Wallinder, J. Pan, C. Leygraf, A. Delblanc-Bauer, Corr. Sci., 41 (1999) 275-289.

V. L'Hostis, C. Dagbert, D. Feron, Electrochim. Acta, 48 (2003) 1451-1458.

A. Kocijan, D. Kek Merl, M. Jenko, Corr. Sci., 53 (2011) 776-783.

Published
2016/04/28
How to Cite
Kožuh, S., Vrsalović, L., Gojić, M., Gudić, S., & Kosec, B. (2015). Comparison of the corrosion behavior and surface morphology of NiTi alloy and stainless steels in sodium chloride solution. Journal of Mining and Metallurgy, Section B: Metallurgy, 52(1), 53-61. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/7617
Section
Original Scientific Paper