Hydrothermal decomposition of industrial jarosite in alkaline media: the rate determining step of the process kinetics
Abstract
This work examines the role of NaOH and Ca(OH)2 on the hydrothermal decomposition of industrial jarosite deposited by a Mexican company in a tailings dam. The industrial jarosite in mainly composed by natrojarosite and contains 150 g Ag/t, showing a narrow particle size distribution, as reveled by XRD, fire assay, SEM-EDS and laser-diffraction analysis. The effect of the pH, when using NaOH or Ca(OH)2 as alkalinizing agent was studied by carrying out decomposition experiments at different pH values and 60°C in a homogeneous size particle system (pH = 8, 9, 10 and 11) and in a heterogeneous size particle system (pH = 11). Also, the kinetic study of the process and the controlling step of the decomposition reaction when NaOH and Ca(OH)2 are used was determined by fitting the data obtained to the shrinking core model for spherical particles of constant size. These results, supported by chemical (EDS), morphological (SEM) and mapping of elements (EDS) analysis of a partially reacted jarosite particle allowed to conclude that when NaOH is used, the process kinetics is controlled by the chemical reaction and when Ca(OH)2 is used, the rate determining step is changed to a diffusion control through a layer of solid products.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The Author(s) warrant that their manuscript is their original work that has not been published before; that it is not under consideration for publication elsewhere; and that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by the responsible authorities at the institution where the work was carried out. The Author(s) affirm that the article contains no unfounded or unlawful statements and does not violate the rights of others. The author(s) also affirm that they hold no conflict of interest that may affect the integrity of the Manuscript and the validity of the findings presented in it. The Corresponding author, as the signing author, warrants that he/she has full power to make this grant on behalf of the Author(s). Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA).
Authors are permitted to deposit publisher's version (PDF) of their work in an institutional repository, subject-based repository, author's personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication.
Upon receiving the proofs, the Author(s) agree to promptly check the proofs carefully, correct any typographical errors, and authorize the publication of the corrected proofs.
The Corresponding author agrees to inform his/her co-authors, of any of the above terms.