Comparison of the mineralogy and microstructure of EAF stainless steel slags with reference to the cooling path

  • MOJCA LONCNAR Acroni d.o.o.
  • ANA MLADENOVIČ Slovenian National Building and Civil Engineering Institute
  • MARIJA ZUPANČIČ Faculty of Chemistry and Chemical Technology, University of Ljubljana
  • PETER BUKOVEC Faculty of Chemistry and Chemical Technology, University of Ljubljana

Abstract


In the present study the differences in the mineralogical composition and microstructure of EAF (electric arc furnace) austenitic and ferritic stainless steel slags with regard to the cooling path, the technical process of steel production and environmental ageing reactions were evaluated. It was shown that the mineralogy of the investigated EAF stainless steel slags varied from one slag to another, depending on the quality of the produced stainless steel. The production process of the treated steel also has a strong influence on the mineralogy of the slags. The conditions during water cooling were not sufficient to prevent the crystallization of primary mineral phases, which occurs predominantly in air cooled slag samples, probably due to the high basicity of the investigated slags. However, the water cooling of hot slag leads to the absence of γ-CaSiO4 and the formation of secondary minerals, predominantly calcite, portlandite, ettringite, CAH and CSH. It has been shown that during the environmental ageing test (down-flow column test) secondary minerals were formed, which were the same as those formed during the water cooling of slags.

References

Euroslag 2012, Position paper on the status of ferrous slag complying with the waste framework directive (article 5/6) and the REACH regulation, Duisburg-Rheinhausen, 2012.

D. Durinck, F. Engström, S. Arnout, J. Heulens, P.T. Jones, B. Björkman, B. Blanpain, P. Wollants, Resour. Conserv. Recy., 52 (2008) 1121–1131.

H. Motz, J. Geiseler, Waste. Manage. 21 (2001) 285–293.

D.S. Apul, K.H. Gardner, T. Taylor Eighmy, A.-M. Fällman, R.N.J. Comans, Environ. Sci. Technol., 39 (2005) 5736–5741.

M. Loncnar, M. Zupančič, P. Bukovec, A. Jaklič, Mater. Tech., 43 (2009) 315– 321.

S. Mostafaee, M. Andersson, P. Jönsson, 27 (2010) 425–436.

M. Tossavainen, F. Engstrom, Q. Yang, N. Menad, M. Lidstrom Larsson, B. Bjorkman,Waste. Manage. 27 (2007) 1335–1344.

B. Vidacak, I. Arvanitidis, P.G. Jönsson, P. Sjöberg P., Scand. Journal. Metall., 31 (2002) 321–327.

H. Shen H, E. Forssberg E, U. Nordström, Resour. Conserv. Recycl., 40 (2004) 245–271.

Y.J. Kim, S.K. Kim, D.S. Kim, Y.D. Lee, P.K. Yang, J. Am. Ceram. Soc., 75 (1992) 2407–2419.

R. Dekkers, C.F. Woendregt, P. Wollants, J. Non-Cryst. Solids., 282 (2001) 49–60.

D. Durinck, P.T. Jones, M. Guo, F. Verhaeghe, G. Heylen, R. Hendrickx, R. Baeten, B. Blanpain, P. Wollants, Steel Res. Int., 78 (2007) 125–135.

J. Ekengård, A.M.T. Andersson, P.G. Jönsson, Ironmaking Steelmaking, 35 (2008) 575–588.

M. Guo, D. Durinck, P.T. Jones, G. Heylen, R. Hendrickx, R. Baeten, B. Blanpain, P. Wollants, Steel Res. Int., 78 (2007) 117–124.

B. Bradaškja, J. Triplat, M. Dobnikar, B. Mirtič, Mater. Tech. 2004; 38 (2004) 205–208 (in Slovenian language)

L. Zhang, L. Zhang, M. Wang, G. Ki, Z. Sui, ISIJ Int., 46 (2006) 458–465.

J.W. Kim, S.K. Kim, D.S. Kim, X.D. Lee, P.K. Yang, ISIJ Int., 36 (1996) 40–43.

D. Durnick, P.T. Jones, B. Blanpain, P. Wollants, J. Amer. Ceram. Soc., 91 (2008) 3342–3348.

C.J. Chan, W.M. Kriven, J.F. Young, J. Am. Ceram. Soc., 75 (1992) 1621–1627.

E. Engström, D. Adolfsson, Q. Yang, C. Samuelsson, B. Björkman, Steel Res. Int. 2010; 81 (2010) 362–371.

S. Diener, L. Andreas, I. Herrmann, H. Ecke, A. Lagerkvist, Waste Manage., 30 (2010) 132–139.

A. Van Zomeren, S.R. van der Laan, H.B.A. Kobsen, W.J.J. Huijgen, Waste Manage., 21 (2011) 2236–2244.

W.J.J. Huijgen, H.-J. Witkamp, R.N.J. Comans, Environ. Sci. Technol., 39 (2005) 9676–9682.

P. Suer P, J.E. Lindqvist JE, M. Arm M, P. Frogner–Kockum, Sci. Tot. Environ., 407 (2009) 5110–5118.

R.B. Perkins, C.D. Palmer, Geochim. Cosmochim. Acta, 63 (1999) 1203–1218.

M. Zhang M, E.J. Reardon, Environ. Sci. Technol., 37 (2003) 2947–2952.

M. Chrysochoou, D. Dermatas, J. Hazar. Mater., 136 (2006) 20–33.

H. Pöllman, S. Auer, H.J. Kuzel, Cem. Concr. Res., 23 (1993) 422–430.

R.B. Perkins, C.D. Palmer, Appl Geochem., 15 (2000) 1203–1218.

G. Cornelis, C. Anette Johnson, T. Van Gerven, C. Vandecasteele, Appl. Geochem., 23 (2008) 955–976.

M. Ochs M, B. Lothenbach B, E. Giffaut, Radioch. Acta, 90 (2002) 639–646.

D. Adolfsson, R. Robinson, F. Engström, B. Björkman, Cem. Concr. Res., 41 (2011) 865–871.

D. Adolfsson, F. Engström, R. Robinson, B. Björkman, Steel Res. Int. 2011; 82 398–403.

Y. Fu, J. Ding, J.J. Beaudoin, Cem. Concr. Res., 26 (1996) 417–426.

L. Kriskova ,Y. Pontikes, Ö. Cizer, G. Mertens, W. Veulemans, D. Gesen, P.T. Jones, L. Vanderwalle, K. van Balen, B. Blanpain, Cem. Concr. Res., 42 (2012) 778–788.

L. Muhmood L, S. Vitta S, D. Venkateswaran, Cem. Concr. Res. 2009; 39 (2009) 102–109.

Published
2016/12/31
How to Cite
LONCNAR, M., MLADENOVIČ, A., ZUPANČIČ, M., & BUKOVEC, P. (2016). Comparison of the mineralogy and microstructure of EAF stainless steel slags with reference to the cooling path. Journal of Mining and Metallurgy, Section B: Metallurgy, 53(1), 19-29. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/9035
Section
Original Scientific Paper