Effect of ARB process on textural evolution and its comparison with normal rolled AA7005 aluminum alloy

  • Xie Hu Central South University
  • Ming Pu Wang
  • Wei Chen

Abstract


Abstract: In the present work, texture evolution of AA7005 aluminum alloy during the accumulative roll bonding and conventionally rolled was investigated by X-ray diffraction. It had been found that the dominant texture components of both samples were Brass, Copper, Rotated Cube and Goss components, but the ARB texture evolution showed more quickly and complex feature. When the number of ARB cycle increased, the intensity of texture components decreased at the second and third pass, then enhanced at the fourth pass, and finally decreased. With the ARB continued there was a texture transition at the second and third pass from Brass and S to Rotated Cube components because the shear texture which form in the surface region should be put into the center during the next pass. The texture intensity enhanced at the fourth pass might be attributed to the formation of nano shear bands. The texture intensity decreasing at final cycle was correlated to redundant shear strain and continuous recrystallization during high ARB passes.

References

Y. Saito, H. Utsunomiya and N. Tsuji, Acta Mater., 47(2) (1999) 579-583.

N. Kamikawa, N. Tsuji and N. Hansen, Acta Mater., 54(5) (2006) 55-66.

P. B. Prangnel, J. R. Bowen and P. J. Apps, Mater Sci Eng A.,375A (2004) 178-185.

N. Tsuji, Y. Saito and S.H. Lee, Advanced Engineering Materials., 5(5) (2003) 338-344.

S. H. Lee and Y. Saito, Mater Sci Eng A., 325A (2002) 228-235.

N. Hansen, X. Huang , N. Tsuji, Mater Sci Eng A., 387A (2004) 191-194.

M. Karlik , P. Homola and M. Slamova , J. Alloys Comp., 378(1/2) (2004) 322-325.

R. Z. Valiev, R. K. Islagaliev and I. V. Alexandrov, Prog Mater Sci., 45(2) 2000 103-114.

H. Pirgazi , A. Akbarzaden and R. Petrov , Mater Sci Eng A., 492A 2008 110-117.

R. T. Mohammad, A. Fakhreddin and H. Majid, Mater Sci Eng A., 556A (2012) 351-357.

R. Shibayan , S. D. Satyaveer, S. Satyam, Mater Sci Eng A.,528A (2011) 8469-8478.

J. S. Hayes, R. Kyte, P. B. Prangnell, Mater Sci Technol., 16(11/12) (2000) 1259-1263.

S. R. Agnew, J. A. Horton and T. M. Lillo, Scripta Mater.,50(8) 2004 377-381.

N. Tsuji , Y. Ito, Y. Satio, Scripta Mater., 47(12) (2002) 893-899.

H. W. Kim, S.B. Kang, Z.P. Xing, Mater Sci Forum., 408/412 (2002) 727-732.

G. S. Chowdhury, D. Abhijit and B. Ravikumar, Mater Sci Eng A., 428 A (2006) 351-357.

B.N. Li, N.Tsuji and N. Kamikawa, Mater Sci Eng A., 423 A (2006) 331-342

X. Huang, N. Tsuji N and N. Hansen, Mater Sci Eng A., 340 A (2003) 265-271.

R. Mohammad, R.T. Mohammad RT and J. Roohollah, Mater Sci Eng A., 527A (2010) 68-73.

M. Furukawa , Z. Horita , M. Nemoto, Mater Sci Eng A., 324 A (2002) 82-89.

R. Mohammad, J. Roohollah and A. Jerzy, Mater Sci Eng A ., 527A (2010) 7068-7073.

R.T. Mohammd, A. Fakhreddin and J. Roohollah, Mater Sci Eng A ., 556 A (2012) 351-357.

S. Hassan , Scripta Mater., 64 (13) (2011) 556-559.

W. Truszkowski, J. Krol J and B.Major, Metall Trans A., 11 (5) A (1980) 749-758.

Published
2018/12/27
How to Cite
Hu, X., Wang, M. P., & Chen, W. (2018). Effect of ARB process on textural evolution and its comparison with normal rolled AA7005 aluminum alloy. Journal of Mining and Metallurgy, Section B: Metallurgy, 54(3), 401. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/9980
Section
Original Scientific Paper